
Combining Perception and Knowledge Processing for Everyday

Manipulation

Dejan Pangercic and Moritz Tenorth and Dominik Jain and Michael Beetz
Intelligent Autonomous Systems Group Technische Universität München

Email: {pangercic, tenorth, jain, beetz}@cs.tum.edu

Abstract— This paper describes and discusses the
K-COPMAN (Knowledge-enabled Cognitive Perception
for Manipulation) system, which enables autonomous robots
to generate symbolic representations of perceived objects and
scenes and to infer answers to complex queries that require
the combination of perception and knowledge processing.
Using K-COPMAN, the robot can solve inference tasks such as
identifying items that are likely to be missing on a breakfast
table. To the programmer K-COPMAN, is presented as a logic
programming system that can be queried just like a symbolic
knowledge base. Internally, K-COPMAN is realized through
a data structure framework together with a library of state-
of-the-art perception mechanisms for mobile manipulation
in human environments. Key features of K-COPMAN are
that it can make a robot environment-aware and that it
supports goal-directed as well as passive perceptual processing.
K-COPMAN is fully integrated into an autonomous mobile
manipulation robot and is realized within the open-source
robot library ROS.

I. INTRODUCTION

Autonomous robots performing everyday manipulation

tasks have to make many decisions that require the combi-

nation of perception and knowledge processing. As an illus-

trative example for knowledge-enabled perception, consider

a robot that is to set the table together with a human. In

order to implicitly coordinate its course of action with the

human, the robot has to fetch missing items. Based on what

the robot sees on the table and the time of the day, the

robot is to probabilistically infer what meal the table is set

for, what is likely to be eaten, and, based on this, which

utensils are likely to be required. In this paper, we propose

the logic programming system K-COPMAN (Knowledge-

enabled Cognitive Perception for Manipulation) that can test

and satisfy knowledge preconditions for everyday manipula-

tion. K-COPMAN fulfills three main functions:

1. Providing the robot with abstract symbolic knowledge

about perceived scenes. K-COPMAN acquires and stores

perceptual data during robot operation, associates data struc-

tures with symbolic names that can be used for perceptually

grounded knowledge processing. These perceptions extend

static perceptual data like environment maps [1]. There are

two main perception mechanisms: task-directed and passive

perception. Task-directed perception provides information

necessary for accomplishing manipulation tasks – informa-

tion about the object to be acted on and the scene context.

The passive perception is to make the robot environment-

aware by also memorizing objects that are not task-relevant

at the time of perception.Object information is stored in

K-COPMAN at different levels of detail, ranging from raw,

sub-symbolic data to symbolic descriptions.

2. Using abstract symbolic knowledge for accomplishing

perception tasks. K-COPMAN enables the robot to employ

knowledge processing functionalities to simplify perceptual

tasks by using (symbolic) models of context, situations, and

goal-directed behavior. Using knowledge processing mecha-

nisms and the belief state (memory) of the robot, the robot

can for instance point the camera at places where it believes

objects to be or exploit the fact that objects inside a cupboard

are invisible unless the door is open.

3. Answering new types of queries that require the

combination of knowledge processing and perception. For

instance, K-COPMAN enables the robot to infer the items

that are missing on a table set for a particular meal, the

items that have to be put away in order to clean a table, or

the items that have to be put into the fridge. Inferring these

information requires using a combination of perception and

knowledge processing mechanisms.

Technically, K-COPMAN is realized as an interface layer

to open-source SWI Prolog. Prolog combines fast inference

and computation with declarative, logics-based semantics.

Lightweight Prolog inferences can even run in feedback

loops up to 10 Hz to make the robot action-aware. Prolog’s

foreign language interface thereby facilitates the integration

of perception routines written in other programming lan-

guages like C/C++.

The main contributions of this paper are the following

ones: We present K-COPMAN, a logic programming sys-

tem that integrates state-of-the-art perception and knowledge

processing mechanisms for autonomous robot manipulation.

The system can infer answers to many queries required

for competent everyday manipulation. By automatically ac-

quiring scene models of the relevant regions of interest,

such as tables and cupboards [1], the robot becomes aware

of its environment. K-COPMAN uses resource-adaptive/on-

demand information processing on previously perceived raw

sensor data to optimize for operation in parallel to the robot

action execution.

The remainder of this paper starts with an overview of

the software architecture (Section II). Then, the perception

server and the library of perception routines are explained

(Section III). Section IV describes the integration of the per-

ceptual mechanisms with the knowledge processing system

KNOWROB [2]. We conclude with a demonstration scenario,

discuss and evaluate an example query.

II. K-COPMAN SYSTEM OVERVIEW

We apply K-COPMAN to the autonomous mobile ma-

nipulation robot depicted in Figure 2 (right), which is to

perform everyday manipulation activities such as setting the

table in a kitchen environment. K-COPMAN controls and

uses the sensor system shown in Figure 1. A pair of high-

resolution color cameras, a stereo-on-the-chip camera, and a

time-of-flight sensor on a pan-tilt sensor head are used for

task-directed perception. In addition, a tilting laser scanner

mounted on the robot’s shoulder continually acquires depth

maps of the scene in front of the robot (which are mostly

used by the passive perception module).

K-COPMAN is an extension of KNOWROB [2], a system

for fast and grounded knowledge processing on autonomous

manipulation robots. K-COPMAN extends KNOWROB in

two important ways. First, it adds a set of predicates that

abstract away from the robot’s perceptual mechanisms and

transforms the perceptual tasks and their results into a

logical representation suitable for knowledge processing and

decision-making. Second, K-COPMAN provides a continual

update mechanism for the part of the knowledge base that

represents the dynamic world state. This mechanism is to

make the robot environment-aware, i.e. to always have a

rough estimate of the current state of the world. For example,

in our application, objects on tables and kitchen counters

are declared as a relevant dynamic aspect of the world that

should be monitored continually. K-COPMAN keeps track of

the positions of objects on different tables and asserts these

percepts as logical facts.

A robot programmer can use KNOWROB to define con-

cepts needed for robot control in terms of first-order logical

statements. For example, to write plans for joint human-robot

table setting tasks, the programmer might want to define the

concept of items that are missing on a table in the following

way: Missing items on a table where people intend to have

a meal m are those items that are predicted to be needed

for this meal, but cannot be perceived to be already on the

table. Having this definition, the programmer can write a plan

fragment such as: keep putting a missing item on the table

until no further items are believed to be missing. In this code

fragment, the missing item is a knowledge precondition of

the plan step that has to be achieved by computing which

items in the environment satisfy the above concept definition.

���������	

�����
�����
�������	��

��������������
!∀#∃�%�����������&��

�
∋(�

Fig. 1. Setup of the sensor head.

In this setting, K-COPMAN’s task is to test the perception-

related parts of the concept definition. Thus, K-COPMAN

translates the conditions to be checked into parametrized

perception routines and interprets their results in order to

check the conditions. It also controls and supervises the

perception processes that are spawned from the information

requests, and it stores and manages the results returned by

the perception processes.

In order to perform competent perception, it is often help-

ful to make use of other knowledge stored in KNOWROB.

In this example, checking the condition requires the robot

to identify the right table, which is accomplished using

the semantic environment map stored in KNOWROB. It

allows, for example, to query for objects of type “Table”,

especially for those that are used for having meals. Similarly,

reasoning with perceived information requires the system to

explicitly deal with the uncertainty that results from sensors

being unreliable, inaccurate, and only providing incomplete

information about the world. This functionality is provided

by a predicate library that realizes probabilistic first-order

reasoning.

A. K-COPMAN Components

Figure 2 shows the embedding of K-COPMAN into the

overall robot control system and the software components of

K-COPMAN within this system. The core of K-COPMAN is

the K-COPMAN perception server (see Section III). The K-

COPMAN perception server calls the respective perception

routines, monitors and manages the perception processes they

execute, and stores to and updates the K-COPMAN data

store according to the perception tasks and their results.

The second component is the implementation of the K-

COPMAN predicates. The implementation translates infor-

mation needed to compute the truth value of a predicate

into parametrized calls of perception routines and interprets

the results returned by these routines in terms of the infor-

mation requested. The third component is the passive per-

ception component, which continually acquires point cloud

data obtained from laser sensor sweeps (Section III pro-

vides specifics). As a fourth component, K-COPMAN uses

KNOWROB’s query interface to communicate with the robot

control program. The method knowrob-query(q) returns a

boolean value depending on whether or not q is implied

by the “virtual” knowledge base. knowrob-query-var(var, q)

returns the bindings of the query variable var which renders

the logical expression of the query true. The fifth component

consists of KNOWROB extension libraries for perceptual

memory management, first-order probabilistic reasoning and

static environment mapping. K-COPMAN and KNOWROB

are implemented on our autonomous robot and integrated in

ROS (Robot Operating System).

B. Example Scenario

Let us now consider our example task of bringing missing

items to a breakfast table in more detail. Inferring the missing

items is a very complex task and requires the integration

of heterogeneous information: Where is the table? What is

already on the table? What should be there? Where to find

the missing items?

Figure 3 describes the specification of the missingObjects

predicate. The first three conditions in the predicate require

the variable Table to be a table in the environment and

to have a primary function of having a meal on it. This

Fig. 2. K-COPMAN’S building blocks. Left) K-COPMAN perception server with state-of-the-art perception routines and task-directed and passive
perception modules. Middle) KNOWROB with predicates for evoking of perception routines and extension plugins for first-order probabilistic reasoning
and knowledge on static objects. Right) Robotic manipulator with logical control program.

condition can be met by employing the robot’s semantic map

of the environment to identify the tables in the environment

(visualized in red). The fourth condition tests the set of

objects in a given region of interest, which, in our case,

is the top of the table, denoted by the variable Table. This

condition is checked with the perceptual mechanisms of the

K-COPMAN perception server which sets up a perception

task to detect, categorize and recognize all the objects on

the table and binds the result of this perception task to the

Prolog variable Perceived. The next condition specifies the

items that are probably needed on the table. To identify these,

we use the first-order probabilistic reasoning component.

Schematically, KNOWROB converts the predicate neededOb-

jectsForMeal into a query P(on(Obj,Table) | Perceived1, . . .,

Perceivedn), which is then computed for all possible objects.

Given the result of this probabilistic query, KNOWROB binds

the set of objects for which the probability value exceeds

some threshold θ to the Prolog variable Needed (e.g. θ = 0.5
or lower, depending on how conservative we want to be). The

last condition then determines the missing items Missing as

those items that are in the set Needed but not in the set

Perceived.

From the perspective of this paper, the specification of

the predicate perceivedObjectsOnPlane is most relevant, as

it actually uses the capabilities of K-COPMAN.

perceivedObjectsOnPlane(Plane, Perceived) :-
onPlane(Plane),
setOf(Obj-Hyp,

(on(Obj, Plane),
category(Obj,Cat),
uniqueId(Id),
objectInstace(Obj,KnownObj),
Obj-Hyp = [Id,Obj,Cat,KnownObj]),

Perceived).

The condition collects all object hypotheses generated

by the perception routine by producing a unique Id for

each hypothesis, associating with it the raw sensor data

Obj that belongs to the hypothesis, categorizing the object

hypothesis (Cat), and checking whether the hypothesis is

a known object instance KnownObj, and if so, which one.

The perceptual routines needed for the realization of this

condition are explained in Figure 4 and the definitions of

the predicates in terms of these perception routines can be

found in Section IV-B.

III. THE K-COPMAN PERCEPTION SERVER

Let us now explain the perception routines supported by

K-COPMAN, the passive perception, and the storage and

management of perceptual data in more detail.

A. Perception Routines

The K-COPMAN perception server provides a set of

perception mechanisms for images and point cloud data,

including the detection of horizontal planes, point cloud

clustering and categorization, CAD model matching, and

color-based classification. The mechanisms that are most

important for this paper are listed in Figure 4, which shows

the name of the routine, how it can be called abstractly, a

short functional description, and some sample results. These

routines can be used both for task-directed perception and

for the passive perception component described below.

B. Passive Perception

The passive perception component is a key mechanism of

K-COPMAN, which makes the robot environment-aware. It

searches the point clouds of the shoulder laser scanner for

regions of interest, such as tables or cupboards. Whenever

it finds such a region, it clusters the point cloud data in

order to segment objects standing on top of it. A unique

identifier is generated for each of these clusters and asserted

to the knowledge base (perceptual memory), together with

����������	
���
�
���������������
���������	
��
����
�������
����
�����
����
�����	�
���
�������������	����
����
��������� !
�����
����
�	
��
∀��#
	����∃���

����
��∃
�	
��
∀��
����

∀
∀��#
	�����!
��
∃
�	
��
∀��%

∀
∀���
�������
���
��#��
������
�
��
�
��#��%

∀
∀��
���������������
��
��
�
��#��∃
�	
��
∀���
����������!�������&

��∋�������
�	
�������
��
�

��������∀
��∃�����������	�(
�������

)
�����	�!����∗�	�	���
∀�	����+�
∀�

Fig. 3. Query to the K-COPMAN system for items that are missing on a table with respect to a particular meal. The system first locates the table,
perceives the objects on it, queries the probabilistic inference engine for items that are supposed to be on the table and determines those that are missing.
BLN graphical model (right) is explained in Section IV-C.

op abstract routine call functionality example results

fi
n

d
-h

o
r-

p
la

n
es

plane-hyp ←
perceive

an object
category plane
orientation horizontal

size ≥ 0.25m
2

The routine find-hor-planes(pointcloud) estimates surface normals
based on local neighborhoods performs region growing on the points
with approximately vertical normals. The routine then estimates the
best horizontal plane using sample consensus and the minimal bounds
thereof (for details see [3]).

fi
n

d
-c

lu
st

er
s

obj-hyp ←
perceive

an object
category pcd-cluster
supported-by hor-plane

The routine find-clusters(pl) is called with the symbolic name pl of a
horizontal plane as its parameter and returns a set of names of object
hypotheses that are perceived as being supported by pl as its result.
Each hypothesis name is associated with a subset of point cloud data,
which are marked in different colors in the picture on the right.

m
a

tc
h

-c
a

d

given obj-hyp

examine obj-hyp
object-identity
object-pose

match-cad(obj-hyp, 2D-image) gets an object hypothesis obj-hyp and
a 2D color image as its input and performs CAD model matching
on the image region that corresponds to obj-hyp. The routine returns
the object identity of the matching model in the object database and
determines the pose of the object. (see [4]).

m
a

tc
h

-s
u

rf

given obj-hyp

examine obj-hyp
object-identity
object-pose

match-surf(pcd-cluster, 2D image) finds objects in a 2D image using
SURF (Speeded Up Robust Feature) features. For each image, we
extract the regions of interest representing the objects of interest and
compute a vector of SURF features. The next step is to quantize
the feature vector into a bag of features using standard K-Means
clustering. Then a classification is performed using an SVM classifier
with an RBF Laplacian kernel, and the model is used to find the objects
in a test phase.

re
co

n
st

ru
ct

-o
b

je
ct given obj-hyp

examine obj-hyp
object-identity
surface-of-revolution

The routine reconstruct-object(pcd-cluster, rotation-axis) [5] detects
surfaces of revolution in point clouds reliably and efficiently. Symme-
try assumptions can be hypothesized and verified in order to complete
the model from a single view, i.e. to generate data on the occluded
parts of the object. These complete models can be used for grasp
analysis.

Fig. 4. Perception routines provided by the COPMAN Perception Server, their procedure call interface, their functionality and an example result.

information on the region the time at which it was perceived.

The identifier can later be used in conjunction with the

K-COPMAN perception server to further examine the cluster,

e.g. to categorize/classify the corresponding object.

The example in Figure 5 illustrates the information that

is saved for point cloud clusters. Until the object type is

determined, K-COPMAN only knows that it is a Thing, the

region of interest it was detected in (here: roi2), the position

of the cluster center, and the corresponding point cloud data.

��������	
��

��
���������	�
���	����	����
�����

��
������������������	������

��
�����

�������� � ���	�

��

�
������
������

Fig. 5. Information stored in the symbolic knowledge base about a (not
yet fully classified) object that was detected on a table.

C. Perceptual Memory

The perceptual memory stores all percepts, making them

accessible to future queries. For performance reasons, com-

putations are performed on demand. The passive perception

module, for instance, only segments the observed point cloud

data and saves the clusters in the memory. Any further

processing, such as the classification of the observed objects,

is postponed until the information is required for queries

involving the respective object identifiers.

IV. INTEGRATION WITH KNOWLEDGE PROCESSING

The knowledge processing part in K-COPMAN is based

on KNOWROB [2], a relational knowledge processing sys-

tem especially suited for applications in mobile robotics.

KNOWROB is specialized in integrating sensor data into

the knowledge processing system to perform reasoning on

observations from the real world. For this paper, we extended

KNOWROB with an interface to the K-COPMAN perception

server. This allows for direct reasoning on the perceived

objects and their properties, and for applying perception

routines to them.

KNOWROB is implemented in SWI Prolog and makes

use of its support for the extension with custom modules.

The robot’s knowledge about the world is represented in the

Web Ontology Language (OWL) and accessed with Prolog’s

Semantic Web Library. OWL allows for very structured mod-

eling of the world in terms of classes of objects and instances

thereof. For all detected objects, corresponding instances are

created; their types are described by classes. KNOWROB

provides a large amount of encyclopedic knowledge, like

descriptions of object classes and their respective properties,

as well as common-sense knowledge on, for example, the

actions that an object can be used for.

The perception routines described in Section II-B are

embedded into Prolog using the foreign language interface

(FLI). Prolog predicates are linked to the functions in the

perception system and evaluated by calling the corresponding

perception routine.

A. Computable Relations

External data can easily be integrated using computable

relations, which allow to determine whether a relation be-

tween object instances holds not only on the static knowledge

in the system, but also by querying external data sources.

Computables are calculated on demand during the reasoning

process. More details on this topic can be found in [2].

In the K-COPMAN system, computables use attached

perception routines to check if a relation holds or not.

For instance, the relation typeOf(Obj, Type) is evaluated

internally by the K-COPMAN predicate categorize(Id, Type),

and the color property of an object is determined by a color

classification method. In addition to loading data into the

system, computable relations can also be used to calculate

qualitative spatial relations based on the objects’ positions,

e.g. to determine whether an object is on a table. For these

relations, the query is not passed to the perception system,

but to a small Prolog program that reads the object positions

and dimensions and checks whether the relation holds.

B. K-COPMAN Predicates

Owing to space limitations, we cannot list all the predi-

cates provided by the K-COPMAN server. In the following,

we list the most relevant ones for the implementation of the

perceivedObjectsOnPlane predicate:

holds(onPlane(Obj,Plane),ti) is true if Obj refers to the

raw data of an object hypothesis detected by the perception

system when looking at plane Plane at time instance ti. The

predicate is implemented using the perceptual routines find-

hor-planes and find-clusters (see Figure 4).

holds(position(Obj,Pos),ti) is true if Pos is the center of

mass of the last detection of the object hypothesis Obj before

ti.

holds(spatial-rel(Obj1,Obj2),ti) is true if the object hy-

potheses Obj1 and Obj2 were last detected at the positions

Pos1 and Pos2, and if these positions satisfy the constraints

for spatial-rel, e.g. left-of. At the moment, we use hard-coded

rules to define the spatial relations that depend on the pair

of objects at hand but we plan to expand this.

categorize(Obj, Cat) evaluates to true if the point cloud

cluster identified by Obj can be classified as Cat by one of

the perception routines in K-COPMAN. Depending on the

perception routine, Cat can either be a geometric category,

e.g. a cylinder, or an object class like a cup.

C. Probabilistic First-Order Reasoning

In order to cope with non-deterministic domains (e.g.

uncertain sensor data), we integrated statistical models, in

particular statistical relational models, into our knowledge

processing system. By abstracting away from concrete enti-

ties and instead representing general principles (of statistical

nature) about a domain, statistical relational models represent

meta-models for the construction of concrete probability

distributions – represented as graphical models – for a given

domain of course, i.e. a concrete set of entities that are

of interest (see [6]). Specifically, we use Bayesian Logic

Networks (BLN) [7], a formalism that combines statistical

knowledge (in fragments representing conditional probability

distributions) with logical knowledge (sentences in first-order

logic). For a given set of entities, a BLN can be instantiated

to obtain a ground mixed network [8] or auxiliary Bayesian

network that represents a full-joint probability distribution

over the relevant propositions about these entities. Given a

model structure and a sufficient amount of relational data

– taken directly from our relational knowledge processing

system – the parameters of a BLN with given dependency

structure can easily be learned, yielding a quantitative rep-

resentation of statistical dependencies inherent in the data.

To realize our example application, we constructed a

model that represents statistical knowledge about table set-

tings. For this model, we used synthetic training data which

was generated based on a stochastic process that considered

the preferences and habits of six individuals. The model

considers the types of meals, the people participating in them

(whose preferences the model reflects), the places at which

these people sit, the food and drinks they consume as well

as the utensils they use to do so. The model’s conditional

probability fragment structure is shown in Figure 3 (right).

Given a partial table setting for one or more persons, the

model can be used to infer the probability with which

further utensils or food and drinks might be required. Using

an appropriately chosen probability threshold, we can thus

flexibly perform the task of completing a table setting based

on the information we are given.

V. EVALUATION

To validate our proposed framework, we performed several

experiments on the table scenes depicted in the first row of

Figure 6. As we will show, the integrated system can help

a robot system make the decisions required for competent

operation in the presence of uncertainty. In addition to the

example of inferring missing objects, we will present further

queries showing the advantages of integrating perception,

knowledge processing and probabilistic reasoning.

Scenes 1-3 in Figure 6 show incomplete breakfast settings,

whereas scenes 4 and 5 are incomplete lunch settings. The

task is to infer which items need to be added to complete the

setup. The first row shows the incomplete setup and the lists

of objects they involve. In the second row, the table surfaces

and clusters identified in the point cloud data are drawn.

The clusters were projected onto 2D images and classified

with the match-surf routine (third row). In the remaining,

unoccupied parts of the images, we searched for further

objects using combinations of our perception routines.

The set of perceived objects was read into the KnowRob

system and passed as evidence to the probabilistic reasoning

engine which, based on the model described in the previous

subsection, infers the table setting that is most likely to be

desired. The bottom row visualizes the perceived objects

(visualized on the table) and inferred objects (visualized off

the table) as instantiated in KnowRob. The hue indicates

probability: Red corresponds to 1.0, with orange, yellow,

green and blue denoting declining probabilities in this order.

As an example query, consider the fourth scene in Fig-

ure 6. In terms of the functions and predicates the model

considers, the query for potentially missing entities translates

to a probabilistic query as follows,

P(usesAnyIn(P, ?u, M), consumesAnyIn(P, ?f, M) | mealT(M) = Lunch ∧
usesAnyIn(P, Plate, M) ∧ usesAnyIn(P, Knife, M) ∧
usesAnyIn(P, Fork, M) ∧ usesAnyIn(P, Spoon, M) ∧
usesAnyIn(P, Napkin, M) ∧ consumesAnyIn(P, Salad, M) ∧
consumesAnyIn(P, Pizza, M) ∧ consumesAnyIn(P, Juice, M) ∧

consumesAnyIn(P, Water, M) ∧ takesPartIn(P, M))
≈ 〈〈 Glass: 1.00, Bowl: 0.85, Cup: 0.51, . . . 〉,
〈 Soup: 0.82, Coffee: 0.41, Tea: 0.14, . . . 〉〉

where P is some person participating in the meal M , who

is assumed to be using/consuming the objects that were

detected, and we ask for the probabilities of corresponding

usesAnyIn and consumesAnyIn atoms. The results above

(listed in order of probability) are certainly sensible, given

that the presence of a spoon generally implies that something

like soup is likely to be consumed, and therefore that a

bowl/soup plate is likely to be required. Also, a glass is

necessary for the drinks to be consumed.

Further applications of the system, beyond inferring miss-

ing objects, are the recognition of an activity/meal based on

the objects that were perceived, the detection of misplaced

objects (by applying the predicates for computing spatial

relations on the perceived objects), and even the identification

of potentially superfluous objects (i.e. objects that have a low

probability given the other objects).

Since the detected objects are formally represented in the

knowledge base, queries can combine object information

with background knowledge that describes, for example, their

main functionality. For instance, the following query searches

for objects that can be used to cut food and that are lying

on the table:

?- type(Obj, ObjType),
subClassOf(ObjType, ’KitchenUtensil’),
onPlane(Obj, T),
type(Obj, ’Table’),
primaryFunction(ObjType, ’CuttingFood’).

Obj=knife1

VI. RELATED WORK

As this paper is situated in the intersection of robotics

and artificial intelligence, related work concerns both fields

of research. The Shakey robot [9] was one of the first systems

to represent perceived world states as first-order knowledge

bases and to use this knowledge for decision-making and

planning. Unfortunately, subsequent research diverged into

two directions investigated by separate communities: (1) ob-

ject perception and scene understanding and (2) planning and

decision making. Perception for autonomous robots largely

concentrated on methods and algorithms for object recogni-

tion [3], [10], [4], [5], [11], (see also Figure 4). The field of

planning and reasoning (with rare exceptions) pursued their

research goals under the assumption that representations of

the state of the environment are available as a first-order —

sometimes probabilistic — knowledge base.

Horswill et al [12] were the first to couple a perception

system with Prolog, by grounding the predicates in visual

routines of Ullman’s visual routines theory. However, their

focus was on a real-time implementation of that theory rather

than on fostering a competent robot manipulation system.

With regard to the field of knowledge representation, the

research in this paper is most closely related to the work

on knowledge preconditions [13] that tries to formalize

and reason about what agents need to know in order to

carry out actions successfully. Powerful scene representations

have been investigated for vision-based scene perception.

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

bread, coffee, cheese, fork, spoon plate, napkin, sausage, juice fork, knife, spoon, ice-tea, coffee plate, fork, spoon, knife, napkin salad, plate, spoon, fork, napkin

knife, napkin, bowl cake, cup fork, knife, spoon, ice-tea, coffee salad, juice, pizza, water drinking glass, water

juice, sausage, breakfast cereal coffee, bread, cheese, breakfast cereal, tea salad, juice, breakfast cereal, soup, pizza coffee, soup, bowl, cup, glass soup, pizza, knife, bowl, cup

dinner plate, cup, drinking glass knife, glass, spoon, bowl, fork bowl, glass, cup, plate

Fig. 6. Evaluation results. 1st row: Snapshots of test scenes; 2nd row: object hypotheses; 3rd row: detection of objects using match-surf routine;
4th row: results of probabilistic inference for missingObjects query. Below enlisted objects correspond to the inferred ones (visualized off the table) in
left-to-right rear-to-front order.

Neumann et al [14], [15] thus describe a concept of aggre-

gates that are composed of multiple parts and constrained

primarily by temporal and spatial relations. The aggregates

are represented in an ALCF(D) Description Logic, and

their probabilistic dependencies are captured by Bayesian

compositional hierarchies.

Our research is probably best characterized as a specializa-

tion of cognitive vision for autonomous robots, which aims at

integrating representation, reasoning, learning, and planning

mechanisms into vision systems.

VII. CONCLUSION AND FUTURE WORK

We presented K-COPMAN, a system that integrates novel

perception routines and knowledge processing mechanisms

for autonomous robot manipulation. The system abstracts

perceptual facts from the real world, utilises symbolic knowl-

edge to boost up perceptual capabilities, and blends in the

combination of both in order to answer complex queries such

as what items are missing on the table for a meal. We verified

our approach by showing several queries that demonstrate

how the system can contribute to informed decision making.

Including more and more specific perception routines,

investigating spatio-temporal reasoning, life-long learning

using the passive perception component, and more efficient

processing of perceptual data are just some of the items on

our future work agenda.

Acknowledgments: This work is supported by the excel-

lence cluster CoTeSys and by Willow Garage, Menlo Park,

CA.

REFERENCES

[1] R. B. Rusu, Z. C. Marton, N. Blodow, A. Holzbach, and M. Beetz, “Model-
based and Learned Semantic Object Labeling in 3D Point Cloud Maps of Kitchen
Environments,” in IROS, 2009.

[2] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing for Autonomous
Personal Robots,” in IROS, 2009.

[3] U. Klank, D. Pangercic, R. B. Rusu, and M. Beetz, “Real-time cad model
matching for mobile manipulation and grasping,” in Humanoids, 2009.

[4] M. Ulrich, C. Wiedemann, and C. Steger, “Cad-based recognition of 3d objects
in monocular images,” in ICRA, 2009, pp. 1191–1198.

[5] N. Blodow, R. B. Rusu, Z. C. Marton, and M. Beetz, “Partial View Modeling
and Validation in 3D Laser Scans for Grasping,” in Humanoids, 2009.

[6] L. Getoor and B. Taskar, Introduction to Statistical Relational Learning (Adap-

tive Computation and Machine Learning). The MIT Press, 2007.
[7] D. Jain, S. Waldherr, and M. Beetz, “Bayesian Logic Networks,” IAS Group,

Fakultät für Informatik, Technische Universität München, Tech. Rep., 2009.
[8] R. Mateescu and R. Dechter, “Mixed deterministic and probabilistic networks,”

Annals of Mathematics and Artificial Intelligence, 2008.
[9] N. J. Nilsson, “Shakey the Robot,” AI Center, SRI International, Tech. Rep. 323,

1984.
[10] A. C. Romea, D. Berenson, S. Srinivasa, and D. Ferguson, “Object recognition

and full pose registration from a single image for robotic manipulation,” in ICRA,
2009.

[11] J. Bruce, T. Balch, and M. M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” in IROS, 2000, pp. 2061 – 2066.

[12] I. Horswill, “Integrating vision and natural language without central models,” in
In Proc. of the AAAI Fall Symposium on Embodied Language and Action, 1995.

[13] R. C. Moore, Reasoning from Incomplete Knowledge in a Procedural Deduction

System, ser. Outstanding Dissertations in the Computer Sciences. Garland
Publishing, New York, 1975.

[14] B. Neumann and R. Möller, “On Scene Interpretation with Description Logics,”
in Cognitive Vision Systems: Samping the Spectrum of Approaches, ser. LNCS,
H. Christensen and H.-H. Nagel, Eds. Springer, 2006, no. 3948, pp. 247–278.

[15] B. Neumann, “Bayesian Compositional Hierarchies - a Probabilistic Structure
for Scene Interpretation,” in Logic and Probability for Scene Interpretation, ser.
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2008.

