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Abstract— In this work we report about our efforts to equip
service robots with the capability to acquire 3D semantic
maps. The robot autonomously explores indoor environments
through the calculation of next best view poses, from which
it assembles point clouds containing spatial and registered
visual information. We apply various segmentation methods
in order to generate initial hypotheses for furniture drawers
and doors. The acquisition of the final semantic map makes
use of the robot’s proprioceptive capabilities and is carried
out through the robot’s interaction with the environment. We
evaluated the proposed integrated approach in the real kitchen
in our laboratory by measuring the quality of the generated
map in terms of the map’s applicability for the task at hand
(e.g. resolving counter candidates by our knowledge processing
system).

I. INTRODUCTION

Consider a robot that is to act as a household assistant in an
unknown kitchen environment. This robot has to acquire and
use knowledge about where the task-relevant objects, such as
the dishwasher and the oven are and how the robot can act on
them – open, operate, and close them. This knowledge about
the environment that can be used to perform the robot’s tasks
more efficiently is typically called the robot’s environment
model or map.

Creating such models or maps requires the robot to acquire
3D object models that categorize objects, include geometric
information about them, articulation models and a hierarchi-
cal part structure, which include functional components like
the handle for opening the cupboard. We call environment
maps that provide these kinds of information semantic object
maps.

From a pragmatic point of view we consider maps to be
semantic object maps if 1) we can generate a functional
model in a physical simulator in which drawers can be
opened and cupboards have doors that can be opened and
objects can be put inside of them; and 2) objects in the maps
are linked to symbolic representations which enables us to
infer e.g. that a particular 3D object model in the map is an
oven if it has a container-like shape and is used for heating
meals.

In this paper we investigate how these semantic object
maps can be autonomously acquired by a mobile robot. The
robot explores its surroundings in order to acquire a three-
dimensional representation of the environment and interprets
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it to detect, categorize, and reconstruct the relevant objects,
in particular the furniture pieces and essential devices. Sensor
data is acquired using a tilting laser scanner and color video
cameras.

This paper presents the next generation of the semantic
mapping process described in [1]. Advancements over the
previous version aim at the autonomy of map acquisition, the
multi-modality of sensing technology and the use of interac-
tion with the environment to resolve ambiguous segmentation
results. We obtain the following contributions with respect
to the current state of the art.

• autonomous exploration including the selection of the
next best view pose in order to actively explore un-
known space based using a visibility kernel and associ-
ated costmaps;

• registration, segmentation, and interpretation of color
point cloud data from low-cost devices;

• segmentation of differences of point clouds through
interaction using the robot manipulator.

In the remainder of the paper we proceed as follows. After
the overview of the related work we describe the operation
of the whole system in Section III. We provide details of the
primary submodules, namely the acquisition of sensor data
in Section IV, point cloud data interpretation in Section V
and semantic map generation is presented in Section VI. In
the end we give evaluation details and conclude with future
work.

II. RELATED WORK

Semantic mapping for robot manipulation has garnered
much interest recently, and considerable work has been done.

Nüchter et al. [2] propose a 6D SLAM approach and
continue processing the resulting point clouds into basic
elements like walls, floor, and doors, followed by an object
detection step. The robot seems to be controlled remotely,
however in previous work [3], the authors propose an au-
tonomous exploration strategy around the notion of seen and
unseen lines in a two dimensional projection of their environ-
ment. A similar approach has been presented by Yamauchi et
al. [4], where the authors use a grid cell approach and label
each cell as open, unknown or occupied and use basic image
processing techniques to find frontiers between unknown and
open space. Navigation planning simply tries to go to the
closest frontier.
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Fig. 1. System pipeline overview which consists of modules for Data
Acquisitions (Section IV), Next Best View Planning (Section IV-B), Point
Cloud Data Interpretation (Section V) and Semantic Map generation (Sec-
tion VI). Images in the right most column depict the resulting outcome of
every module.

In the field of autonomous 3D exploration, various ap-
proaches have been developed. The next-best-view planning
problem received significant attention for a long time, espe-
cially for the purpose of object modeling, as reviewed in [5].
Our solution is a combination of the work-space exploration
approach from [6] and the object modeling method from [7],
firstly because a labeled voxelized representation is needed
by the robot for mapping/collision avoidance [8] and model
verification [9], and the flexible approach presented in [7] is
readily adaptable to our problem where the 3D sensor has
only 3 degrees of freedom (i.e. robot pose and orientation
within the ground plane).

Point cloud data from different view points need to be
merged in order to create a single representation of the
environment for further analysis. A well-known technique
is the Iterative Closest Point (ICP) algorithm [10], and
several variants and improvements of it have been proposed.
In [11], Pathak et al. exploit the planar structure of their
environment, and propose a consensus based algorithm that
extracts rotation and translation between two scans using
fitted planes and their uncertainties. If we assume a level
ground plane, we can treat the robot pose estimate to be
free of errors in roll, pitch and height, and thus perform a
far simpler ICP step that reduces the complexity from six
degrees of freedom to three.

A recent example of 3D mapping using inexpensive RGB-
D sensors was presented in [12]. They perform spatial
alignment of scans, detection of loop closures and bundle
adjustment to achieve a globally consistent alignment. The
latter two fall outside of the scope of our paper, since we

are dealing with smaller indoor environments and need to
navigate considerable less in order to capture a room.

Eich et al. [13] present the transfer from the spatial to
the semantic domain which is known as the gap problem
in AI. They, too, extract spatial entities from unorganized
point cloud data generated by a tilting laser scanner and
then proceed on to shape recovery using alpha shapes, and
classification of entities using the projection of rectangular
structures and Hough space classifier. While their approach
seems to scale well for windows, desks and entrance doors
it remains unclear how they would segment drawers and
furniture doors. Authors conclude with the promise to build a
descriptive ontology that would allow for spatial reasoning in
the semantic space – an issue that we already tackled in [14]
and now successfully coupled with mapping part reported in
this paper.

Our work presented in this paper is based on previous
work presented in [1], where multiple point clouds of a
kitchen environment are registered and scene interpretation
segments the environment into vertical and horizontal planar
regions. Curvature based region growing and fixture segmen-
tation aid in separating a coherent row of cabinet doors. We
extend the ideas and methods presented in [1] by augmenting
laser data using a high resolution color camera and making
the whole mapping process autonomous.

III. SYSTEM OPERATION

An overview of the system presented herein is depicted
in Figure 1. The robot starts at an (arbitrary) initial position
in the environment and acquires a 360 degree point cloud
of the room. The robot then performs a Next Best View
planning step to determine positions from which the robot
should acquire additional scans to fill the holes in the point
cloud that were caused by occlusions.

After point cloud acquisition, the data is interpreted to
extract the structure of the environment. In order to do
so, the mapping system detects planes in the point cloud
and categorizes them into wall, front faces of furniture,
horizontal, table-like horizontal planes, etc. In the next phase,
the planes that are classified as front faces of furniture pieces
are further processed to locate rectangular regions and to
find fixtures on them that are candidates for handles and
knobs. The third step is the verification of these candidates
and learning the respective articulation models that can be
used by the robot to open and close the respective containers
more competently.

The result of the map acquisition process is then trans-
formed into a 3D semantic object model of the environ-
ment [14] which can be used by the robot to answer
queries such as: Where are all doors and their handles? or
Are there doors that have two handles (hinting at under-
segmentation)?. Some formal description logic queries of
this type are presented in Section VII and serve to equip
the robots with the elementary capabilities that enable them
to perform their tasks more reliably and efficiently.



IV. ACQUISITION OF SENSOR DATA

The input to the autonomous mapping system is a
set of color point clouds which were generated with
a PR2 robot [15] equipped with a tilting laser scanner
(Hokuyo UTM-30LX) and a registered color camera (Prosil-
ica GC2450C, resolution 2448×2050px). Point clouds with
embedded color information enable us to perform segmen-
tation using visual as well as geometric cues, e.g. detecting
furniture door handles based on their prominence from the
door and segmenting the door based on its appearance. In
order to find the association between the 2D and the 3D data
we make use of the PR2 stock calibration [16]. Registration
of incoming point clouds is done pairwise using a modified
variant of the Point-to-Point Linear Iterative Closest Point
(ICP) algorithm, as described in Section IV-A. Since we
designed the whole mapping system to have the robot
acquiring point clouds until all holes in the environment are
filled, the objective of the acquisition sub-module is thus to
a) generate registered 360 degree color point clouds which
are further processed by the Next Best View sub-module
(Section IV-B), and to b) generate a final color point cloud
of the whole room which is needed by the Point Cloud Data
Interpretation sub-module discussed in Section V.

Since the view frustrum of the laser scanner (180◦) is
wider than that of the color camera (70◦), we have to pan
and tilt the robot’s head in order to obtain color information
for all laser points. We then reproject points from the point
cloud into the respective images and thus obtain the color
information for every point. In cases where the projection
of one point falls onto the overlapping area of two or more
images, we obtain the final RGB value by simple averaging.
This requires accurate calibration between the camera and
the laser scanner. We perform this calibration within the
whole-robot calibration procedure as described by Pradeep et
al [16], which produces re-projection errors within 10 pixels
for the range readings we are interested in (closer than 5 m).

A. Merging Point Cloud Views

Prior to registration, the input point clouds are processed
for statistical sparse outlier removal and estimation of sur-
face normals and curvature for each point as described in
[17]. The overlapping regions between the source and the
target point clouds are estimated, which facilitates faster
convergence and minimizes the ICP alignment error. Using a
fixed-radius nearest neighbor search within the target cloud
for each point in the source cloud, we can identify which
points are overlapping. Note that this relies on a sufficiently
low localization error between the two scan poses, and the
search radius can be modeled after the expectation of this
displacement (r = 10 cm in our experiments).

We introduced some optimizations to adapt ICP to the
problem at hand that exploit the fact that the displacement
originates from the localization error of the robot, which
is in the ground plane. We assume roll and pitch to be
zero, and reduce the problem to a 2 dimensional one. For
correspondence selection, we enforce a height criterion that
requires that both points are within a certain εz band from

each other. We also only select point pairs for which their
curvature estimates is within a certain distance εc.

By applying the above two filters, the number of false
correspondences is reduced and the transformation matrix is
calculated based on the obtained correspondences. The final
transformation is then applied to the original point cloud.
This leads to substantially better and quicker registration
(360 seconds for the registration of 13 point clouds with
an average number of 120000 points as opposed to 512
seconds). The final and the most relevant test of registra-
tion accuracy was carried out in the validation sub-module
(Section V-C) where we successfully found and grasped 17
out of 18 handles in our kitchen laboratory.

B. Next Best View

In order to act and explore autonomously, the robot needs
to be able to determine a good position to acquire the next
scan based on the previously acquired data. The basic idea
is to find robot poses from which as much new (unknown)
geometry as possible is visible, while still containing enough
overlap to the existing data to allow for successful registra-
tion.

The proposed solution performs the following steps: i) find
a set of interesting points that promise information gain, ii)
using a two-dimensional projection, compute a set of poses
with an attached measure of quality from which these points
can be seen, and iii) a verification step in which a simulated
sensor, modeled after the actual sensor, considers the three-
dimensional problem in order to assess the validity of the
most promising of these poses.

1) Determining unmapped regions: For selecting interest-
ing points that promise acquisition of unmapped areas, we
employ an octree containing the accumulated points, where
voxels are marked occupied if they contain points, free if the
laser ray passed through them, or unknown otherwise. We
search for voxels that are labeled free but have neighbors in
unknown space. We call these voxels fringe voxels, and the
rationale is that they represent “windows” into unexplored
space. Note that these voxels can be filtered to eliminate
uninteresting areas, such as ceilings.

2) Computing candidate robot poses: In the next step, we
strive to estimate poses from which as many fringe voxels
as possible can be scanned by the robot. For performance
reasons, we do this in a two-dimensional projection of said
voxels onto the ground plane. We define a visibility kernel
K(φ, dmin, dmax), which encodes the set of poses (relative
to a point) from which that point is visible. The kernel
is a function of the sensor’s horizontal opening angle φ,
and its minimum and maximum range dmin and dmax and
represents a volume in the robot’s 3D planar pose space
〈x, y, ϑ〉. In Figure 2, we show one slice of the visibility
kernel for a given robot orientation (view direction) ϑ. The
shaded areas represent poses from which the voxel v can be
seen given a sensor opening angle of φ (light gray) or φ2
(dark gray).

Note that in our case, we set dmin to the distance of the
robot base center to the closest point that can be scanned on



the ground (∼ 1.0 m), and dmax to 4.0 m, since we consider
the point density of areas which are farther away too low.
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Fig. 2. Visibility kernel for a robot orientation ϑ representing all positions
from where voxel v is visible given the sensor model.

We define a discretized representation of the robot’s pose
space within our environment using a 3D voxel grid. The
dimensions of this grid in x and y are taken from the maximal
extents of the accumulated point cloud, dilated by dmax,
and we discretize the robot’s rotation into n bins. For our
experiments, we chose a coarse discretization into n = 8 bins
because of the large opening angle of our sensor. We set the
spatial resolution to 10 cm in x and y. For every of these
n 2D costmaps, we loop over the fringe voxels and apply
the visibility kernel as an additive stencil on the respective
costmap, yielding a stack of costmaps in which cells with
a high value correspond to poses from where many fringe
points can be seen.

However, since the resulting data points from the next view
will need to be registered to the existing points, we not only
want to maximize the information gain, but also need to
achieve about 50% overlap. To this extent, we compute a new
stack of costmaps for all occupied voxels in the octree, and
combine the two using a minimum intersection approach:
Let CF = {fx,y,ϑ} be the fringe and CO = {ox,y,ϑ} the
occupied costmap. The resulting costmap is thus defined
as follows: C = {cx,y,ϑ} with cx,y,ϑ = min(cF , cO) for
all x, y, ϑ. Maxima in C represent poses from which many
fringe and occupied voxels are visible according to the 2D
model.

Note that we intersect C with a dilated version of the
occupancy grid used for navigation to eliminate impossible
poses such as within walls, and we set all cells cx,y,ϑ to zero
if the octree does not have an occupied voxel on the floor
at 〈x, y〉. Other penalty or reward functions could easily be
added, such as the distance that the robot would need to
travel to the next scan pose.

3) Pose validation: In order to generate poses that achieve
our 50% overlap goal mentioned earlier, we sample poses
from C with a probability proportional to the pose quality
and perform a raycasting step for each of the sampled poses.
Given the sensor parameters such as angular resolutions and
opening angles, we cast rays in the octree and count the
number of occupied no and fringe nf voxels. We compute
the entropy as:

H = −
2∑

i=1

pilog(pi) where
p1 = no/(no + nf )
p2 = nf/(no + nf )

. (1)

H is maximal if the numbers of visible fringe and occupied
voxels are the same.

For every pose sample, we multiply the reward from the
costmap with H and sort the list of poses by this score. The
robot traverses this list and selects the first for which the
navigation planner can generate a path.

Fig. 3. Computation of next best view for the pose 1. Top left: free (green)
and occupied (red) voxels, Top right: unknown voxels in yellow, Bottom
left: orbital view of fringe voxels (black dots), next best poses (blue arrows)
as well as scan-most-fringe-points pose (arrow) and best-registration pose
(arrow). Bottom right: situation from the bottom left figure in topographical
view.

V. POINT CLOUD DATA INTERPRETATION

The system extracts relevant planes from the registered
point cloud, categorizes them as doors or drawers, walls,
floor, ceiling, and tables or other horizontal structures. This
is achieved by first locating the relevant planar structures,
testing for the existence of fixtures, and segmenting the
different doors.

A. Recognition of Planes and Fixtures

As an exhaustive search for all planes is computationally
intractable, we are only searching for those that are aligned
with the walls of the room. The orientations of the main
walls are determined using a RANSAC based approach
on the normal sphere, as in [18]. Since in many indoor
environments, most of the surface normals estimated at every
point coincide with one of the three main axes of the room,
these directions can be used to limit the plane extraction.

After extracting the primary planes, they are classified into
floor and ceiling based on (horizontal orientation and) height,
and the walls based on the observation that they are adjacent
to the ceiling. The remaining planar connected components
– if they exceed a minimum size (set to empirically deduced
value of 500 point inliers in herein presented experiments)
– constitute candidates for tables or furniture faces. In order



Fig. 4. Segmentation results visualised without ceiling. Top left: point cloud with highlighted floor, top right: segmentation of horizontal planes, bottom
left: segmentation of handles shown in the photo above, bottom right: furniture faces after segmentation through interaction. Please note that the scans
were taken after opening the drawers, dishwasher and fridge. The segmentation of the oven and the drawer under the fridge failed due to the lack of points
on the handle fixture, whereas the dishwasher’s inner surface is largely reflective. Figure 8 shows the final and manually augmented result.

to detect fixtures we first find point clusters that are withing
the polygonal prism of the furniture faces using euclidean
distance measure and then fit RANSAC lines or circles to
those clusters and thereby differentiate between handles and
knobs. We use a down-sampled (voxel size 3.5 cm) version
of the point cloud for speed considerations and to simplify
the computation of patch areas.

Kitchen appliances, doors and drawers typically have
fixtures that allow interaction with them. The existence of
fixtures is a good indication to the presence of these objects,
so the algorithm searches for clusters of points in the vicinity
of detected vertical planar structures. Since the ultimate goal
is the manipulation of the handles by our robot, we discard
clusters that are too big in diameter (or linear and too big
in diameter) relative to the gripper aperture. These filters are
simple enough to be performed for all possible clusters and
explain all of the fixtures in typical kitchen environments.
The result of this process can be seen in Figure 4.

B. Generation of Door and Drawer Hypotheses

In previous work [1], we found gaps between adjacent
cabinet doors using curvature from laser data alone. Since
the accuracy of our current laser sensor is considerably lower
than the one employed there, we cannot purely rely on
geometry, but perform the segmentation of furniture faces
using camera images registered onto our laser data (see
Figure 5).

The algorithm uses seed points around the footprint of
fixtures to estimate an initial model of the color distribution
of the door, consisting of the intensity values’ median ĩ
and median average distance (MAD). The seed regions are
expanded by adding neighboring points whose colors match

the estimated color model, using a basic region growing
algorithm based on the assumption that points on the door
border are surrounded by points with different color. The
color model for a region is updated after all possible points
are added, and the process is repeated until the values of
ĩ and MAD stabilize. After this step, fixtures that produce
overlapping segments are marked for further examination,
while the rest are added to the map, along with rectangular
approximations to the found planar segments.

The algorithm is parameterized on the maximum search
radius for fixture footprint points, the equivalent threshold
for the region growing phase, and a color threshold α, which
defines how much the color of a point is allowed to deviate
from the door color model. In our experiments, we found a
value of α = 2 ·MAD to yield stable results. The method
deals well with the shadows of handles and doors of different
appearance (metallic for the oven and light gray for the rest
of our kitchen). Stronger shadows did prevent small parts of
some doors to be segmented correctly, but the rectangular
approximation still included them.

Since the robot can interact with the environment, doors
can also be segmented by opening them, and evaluating
the temporal differences. However, this process is relatively
slow, so one idea would be to only do this for ambiguous
segmentations. However, when opening them, we can also
determine the type of joint (rotational or prismatic, i.e.
translational). This means that for mapping whole kitchens,
including estimating articulation models, we do perform this
for every handle found, but if necessary, we can fall back
to geometric and visual segmentation in cases where time
is critical or where the handles can not be operated by the
robot gripper.



Fig. 5. Region growing based generation of drawer and door hypotheses.
Left: point cloud data overlaid with reprojected intensity information. Right:
the same kitchen part overlayed with segmentation results for doors and
handles.

C. Active Door and Drawer Hypotheses Validation through
Interaction

The idea of the robot interacting with the environment
in order to overcome problems with uncertainties [19] or
to verify grasp models for objects [20] has been present
for a while. In this work, we describe a method to open
detected drawers and cabinet doors without a priori knowl-
edge about the validity of the handle assumption or the
underlying articulation model. In fact, we can estimate
articulation models for every detected handle, which can be
used in subsequent manipulation tasks directly with a more
optimized strategy. Furthermore, we compute the regions
of the point cloud which have changed after manipulating
the handle and segment the differences, which gives us the
correct segmentation of all furniture parts which are rigidly
connected to the handle.

Algorithm 1: Controller for opening containers with
unknown articulation model. Note: poses are stored as
transformation matrices (translation vector and rotation).

Initialize p0 = point on the handle candidate;
p1 = p0 + nfurnitureplane; t = 0
while gripper not slipped off AND cartesian error
< threshold do

if d(pt+1,projection of robot footprint) < .1 m then
move base(artif. workspace constr. for pt+1)

move tool(pt+1)
stabilize grasp() (see Figure 6)
Rel = p−1

0 ∗ pcurr with current tool pose pcurr
Extrapolate: Rels = scale (Rel, (|Rel|+ .05)/|Rel|)
pt+2 = p0 ∗Rels
t = t + 1

Return: Set of poses P{p0...pn} representing the
opening trajectory.

1) Opening of Drawers and Doors with Unknown Ar-
ticulation Models: We developed a general controller (see
Algorithm 1) that makes use of the compliance of the PR2
robot’s arms and the force sensitive finger tip sensors to open
different types of containers without a priory knowledge of

the articulation model. Since the arms lack force sensors, the
algorithm uses the Cartesian error of the end effector (com-
manded vs. actual position) to determine when the maximum
opening is reached. The algorithm relies on the grippers
maintaining a strong grasp while the arms are compliant.
This way the mechanism that is to be opened steers the arm
in its trajectory even when there is a considerable difference
between the pulling and the opening direction. The robot
also adjusts its base position if the door mechanism requires
this. The controller records a set of poses with the stable
(aligned) grasps and returns those as an articulation model
P . The controller works reliably as long as the force required
to open the container is lower than the limit the friction of
the gripper tips imposes.

Fig. 6. The fingertip sensors are used to adjust the tool frame rotation to
the rotated handle. Left part of the figure displays arrays of sensor cells on
the PR2 robot’s fingers. Asymmetry in the top-left part gives the measure
of misalignment between the gripper and the handle.

A particular problem when opening unknown containers
is the possibility of collisions of a container with the robot.
This could occur e.g. when a low drawer is being opened and
pulled into the robot’s base. Since the articulation model is
not known, an a priori motion planning step is not possible.
We thus propose the following heuristic: we exclude tool
poses whose projections of the gripper to the floor fall close
to or within the projection of the robot’s footprint from the
allowed workspace limit L of the gripper. This way, the robot
tries to move backwards and prevents the collision.

2) Segmentation of Point Cloud Differences: To segment
out the front furniture faces we use temporal difference reg-
istration as put forth in [17], using a search radius parameter
of 1 cm. We project the points that only appear in the second
scan into the plane orthogonal to the last opening direction
pn. We obtain the convex hull in this plane, and assuming an
environment based on rectangular furniture, we extract the
width and height of the furniture front. For prismatic joints
such as drawers, we can compute the distance between the
two planes, which gives us a maximum opening distance and
the depth of a drawer. For rotational joints, a similar value for
the maximum opening angle can be found from the angles
between the two planes. Depth of the container is in this
case computed from the second cluster corresponding to the
measurements of its inner side. Results of this step for three
furniture pieces are depicted in Figure 7.



Fig. 7. Examples of interactive segmentation.

VI. SEMANTIC MAP GENERATION

The creation of the final semantic map from this process,
by snapping of object extents to match, is an extension of
the work presented in [17]. The map is represented using
OWL-DL and can be shared between different modules or
even different robots. For every detected furniture object,
we record a dataset that contains an ID, the type of the con-
tainer/articulation model found, geometric extents in depth,
width and height, and the position and orientation in space.
We also record hierarchical information such as a kitchenette
consisting of several pieces of furniture or which handles
were found on which furniture pieces. Please see Figure 8.

Fig. 8. Final Semantic Map as a result of the system presented herein.

The map is represented using OWL-DL and thus can
be shared between different modules or even different
robots. It is being used in the knowledge processing system
KnowRob [14] and can be exported to URDF (Unified
Robot Description Format), which we use in order to get the
collision and the articulation models of environments. Please
also refer to our video submission for the demonstration of
various use cases.

For every detected furniture object, the map contains a
dataset that holds an ID, the type of the container/articulation
model found, geometric extents in depth, width and height,
and the position and orientation in space. We also record

hierarchical information such as a kitchenette consisting of
several pieces of furniture or which handles were found on
which furniture pieces.

VII. EVALUATION AND RESULTS

In order to evaluate the approach proposed herein, we
performed experiments in our kitchen laboratory depicted
in the bottom part of Figure 1. In total, we acquired 26
point clouds, where the first scanning pose was selected
randomly. The point clouds were first registered locally for
the respective pose, then fed to the next best view module and
finally registered globally together. Navigation planning was
performed by modules provided with the robot. A thorough
evaluation of the exploration behaviours generated by the
next best view planning falls outside the scope of this paper
and will be addressed in a separate topical publication.

A. Logical Queries

One measure of success of the mapping process is the
range of queries that can be answered based on the extracted
information. We linked the result of the methods described
in this paper to the KnowRob-MAP system [14], which rep-
resents the environment information in terms of description
logics. Objects are represented as instances of classes such
as Container or Handle. These classes are arranged in a
hierarchical structure, which allows to generalize: A query
for StorageConstructs returns all instances of sub-classes like
Cupboard or Drawer. The classes and their properties can
be used to formulate e.g. the following queries in order to
check for mapping problems (query 1), to classify objects
based on their parts (query 2) or the relation to other objects
(query 3).

1) Are there doors that have two handles (hinting at under-
segmentation)?

Door u (> 2 physicalParts.Handle)

2) Which containers have handles as well as knobs (e.g.
to search for microwave ovens, dish washers or similar
appliances)?

Container u ∃physicalParts.Handle
u ∃physicalParts.Knob

3) Which horizontal surfaces are likely to be counters
(those that are above some drawers, cupboards, house-
hold appliances – briefly, StorageConstructs)? Which
are tables (those with no StorageConstruct below)?

CounterTop v ObjectSupportingFurniture
u ∃aboveOf.StorageConstruct

KitchenTable v ObjectSupportingFurniture
u ¬∃aboveOf.StorageConstruct



VIII. CONCLUSIONS AND FUTURE WORK

We presented an integrated systems paper for autonomous
exploration and semantic mapping which enables the robot
to autonomously explore the environment and concurrently
build its semantic map. The final map contains functional
models and is also linked to symbolic representations which
renders our system as being useful for various appli-
cations such as e.g. classification of places and scenes.
Our system is running on the PR2 robot and fully inte-
grated into ROS (www.ros.org) and the resulting map
has been used regularly in the demos in our laboratory
( http://www.youtube.com/user/iasTUMUNICH#
p/u/7/4usoE981e7I).

Despite system’s general robustness there are still lim-
itations in that it can not deal with translucent surfaces
and surfaces that generate specular reflections. Since the 3D
sensors are at the limit with these kind of problems we plan
to investigate vision-driven approaches to handle them, as
the one presented in [21]. Furthermore, we plan to improve
or exchange our registration module in favor of one that
requires less overlap [12], [11], thereby exploiting the full
potential of the entropy function in the proposed next best
view generation module.

Lastly, we plan to perform a large quantity of tests in
various kitchens in order to increase system’s generality. The
use of the PR2 and ROS in various labs across the World is
a big advantage in this undertaking. We intend to use such
collected data to train specific classifiers for identification of
more complex furniture pieces (e.g. stoves, sinks, chairs).
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