
How-Models of Human Reaching Movements in the Context of Everyday
Manipulation Activities

Daniel Nyga, Moritz Tenorth and Michael Beetz
Intelligent Autonomous Systems, Technische Universität München

{nyga, tenorth, beetz}@cs.tum.edu

Abstract— We present a system for learning models of human
reaching trajectories in the context of everyday manipulation
activities. Different kinds of trajectories are automatically dis-
covered, and each of them is described by its semantic context.
In a first step, the system clusters trajectories in observations
of human everyday activities based on their shapes, and then
learns the relation between these trajectories and the contexts
in which they are used. The resulting models can be used
for robots to select a trajectory to use in a given context.
They can also serve as powerful prediction models for human
motions to improve human-robot interaction. Experiments on
the TUM kitchen data set show that the method is capable of
discovering meaningful clusters in real-world observations of
everyday activities like setting a table.

I. INTRODUCTION

Humans performing everyday manipulation activities such
as setting the table or cleaning up exhibit motion – in par-
ticular reaching behavior – that is both stereotypical [1] and
optimized [2], [3]. Using stereotypical movement patterns
rather than planning each individual manipulation task anew
has a number of advantages, many of them are implied by
the reduction of motion nondeterminism. Thus, stereotypical
reaching patterns improve the predictability of movements
both by the robot itself and for external observers. In
addition, the monitoring, diagnosis, planning and learning of
stereotypical movements is faster and can have better results.

Today’s manipulation robots do not yet exploit the power
of stereotypicality as a resource for better motion plan-
ning and control. In our research, we aim at building and
investigating models of human manipulation activities and
transfer these models in order to realize better autonomous
robot control systems. In this respect, we distinguish between
how- and why-models of human manipulation behavior. The
how-models enable us to compactly describe and predict
the manipulation behavior, while the why-models look into
optimization and other criteria that might cause the humans
to select the respective behavior.

In this paper we investigate how-models for reaching
actions in the context of unconstrained human everyday
activities such as setting the table. Figure 1 depicts the
trajectories of the left and right hand of four subjects and
20 table-setting episodes. The image on the lower left shows
the sub-sequences of the trajectories which correspond to the
reaching movements in these scenarios. The picture on the
lower right depicts the clustered trajectories for which we
compute mean trajectories as their representatives.

Fig. 1. Top: Trajectories of the left and right hand in 20 table-setting
episodes. Bottom left: Reaching trajectories, drawn on top of an image of
the experiment kitchen, and original positions of the manipulated objects.
The image is only an approximate visualization without perfect alignment
with the trajectories. Bottom right: Clusters found in this set of reaching
trajectories.

The main contributions of this paper are (1) a clustering
algorithm that reliably identifies clusters of trajectories in
real-world observations of human activities, and (2) methods
for learning semantic descriptions of the clusters which allow
to select the appropriate trajectory in a given context. In the
remainder of the paper, we first give an overview over the
system components, introduce the trajectory representation,
the clustering algorithm, and the techniques for semantically
characterizing trajectory clusters. We present results of our
evaluation on motion tracking data and finish with a discus-
sion of related work and our conclusions.

II. SYSTEM OVERVIEW

The proposed system consists of two main components:
A trajectory clustering module, and models that describe
the semantics of those clusters. For learning the semantic
models, we employ the GrAM (Grounded Action Models)
framework described in [4]. GrAMs have been applied to
the analysis of soccer games and, in [5], for learning places
used in manipulation actions; here, we learn trajectories
instead. The methods described here are embedded in the

AM-EvA system [6] that combines data mining with knowl-
edge representation for modeling and reasoning on human
activities on multiple levels, ranging from the high-level
activity context to intermediate levels like actions down to
single motions. AM-EvA provides pre-segmented trajectory
data for motions like Reaching or LoweringAnObject which
are used as the input to this system. The trajectory clustering
algorithm (Section IV) is implemented in MATLAB and
called from AM-EvA’s Prolog-based infrastructure via the
Prolog-MATLAB interface PLML [7].

III. TRAJECTORY REPRESENTATION

We define a set of trajectories, e.g. the set of all observed
reaching motions, as T = {τi}, and describe each trajectory
τi ∈ T by an ordered sequence of m points πki

τi = (π1
i , . . . , π

m
i), πki ∈ R3 (1)

The choice of a suitable coordinate representation is im-
portant in any information extraction application: In a poor
representation, the aspects of interest may be hidden by less
important, though strong, variations in the data. For example,
the naive choice of an environment-global coordinate system
has the drawback that the strongest variation in the data
is usually the position of the subject in the environment,
while more interesting aspects like the hand motions are
hidden. We chose the following trajectory representation
that abstracts away from the global position in space while
maintaining important information like the concepts of up-
/downward motions and the shape of the trajectories. For
clustering, trajectories are described by the component-wise
stepwise relative progression

δi = (δ1i = π2
i − π1

i , . . . , δ
m−1
i = πmi − πm−1i) (2)

which can be interpreted as a sequence of vectors, each
pointing from a point πk−1i to the subsequent point πki
(2 ≤ k ≤ m). Figure 2 illustrates these two representations.
The diagram on the left shows a set of trajectories T in global
coordinates as in (1). The right diagram visualizes the local
coordinates of the corresponding δi in form of a ”fir branch”.
The bold black line (the “branch”) is the cluster centroid in
global coordinates, whereas the “needles” are the vectors δki .
This kind of visualization reveals interesting properties like
the variance in different parts of the trajectory, the existence
of clusters at different positions, or the cluster cohesion.

A. Distance metric

An appropriate distance metric is crucial for extracting
meaningful clusters. For comparing trajectories, we first re-
sample them to a fixed length, compute the component-wise
distances, and combine the single distances to a common
value. The less frayed the fir branch visualization looks (see
Figure 2), the more cohesive the set of trajectories, that is,
the more similar the orientations of the vectors δki . Formally,
this can be described by the angles between the δki and δkj
vectors of two trajectories τi and τj at a particular component

0

10

20

30
−20 −15 −10 −5 0

−2

0

2

4

6

8

10

12

14

0
20

40−40 −30 −20 −10 0 10

−20

−15

−10

−5

0

5

10

15

20

0

10

20

30
−20 −15 −10 −5 0

−2

0

2

4

6

8

10

12

14

0
20

40−40 −30 −20 −10 0 10

−20

−15

−10

−5

0

5

10

15

20

Fig. 2. Left: Trajectories in global coordinates given by πk
i . Right: A “fir

branch” visualization of the cluster centroid of the same set of trajectories
in global coordinates, with the local coordinate vectors δki as “needles” with
lengths normalized to 1. The high variance in the beginning and in the end,
and the low variance in between, is clearly visible.

k which can be computed as:

cosϕ =
xTy

|x| · |y|
⇔ ϕ = cos−1

xTy

|x| · |y|
∈ [0, π] (3)

We obtain the distance function dv for two vectors x and y
by normalizing the angle ϕ to the interval [0, 1].

dv(x,y) =
ϕ

π
=

cos−1 xTy
|x|·|y|

π
(4)

The overall distance between a pair of trajectories τ1 and τ2
is defined as the averaged sum of the vector distances for
each component

dτ (τ1, τ2) := dδ(δ1, δ2) =
1

m− 1

m−1∑
k=1

dv(δ
k
1 , δ

k
2), (5)

Note that, due to the averaging, the domain of values is still
dτ ∈ [0, 1]. In some cases, the relative length difference of
the vector pairs δk1 and δk2 can provide important information,
which can be taken into account by extending dδ(δ1, δ2) to

dδ(δ1, δ2) =
1

2(m− 1)

m−1∑
k=1

(
dv(δ

k
1 , δ

k
2) + 1− min (|δk1 |, |δk2 |)

max (|δk1 |, |δk2 |)

)
(6)

IV. CLUSTERING PROCEDURE

The problem of clustering trajectories is characterized by
high-dimensional data and an unknown number of clusters.
This is challenging for common clustering algorithms: The
k-Means algorithm [8] can handle an unknown number of
clusters only via costly cross-validation. Other techniques
like EM (Expectation/Maximization) or SAHN (Sequential,
agglomerative, hierarchical, non-overlapping) clustering in-
herently handle an unknown number of clusters, but are
computationally too expensive for high-dimensional data.

In this paper, we propose a multi-step hierarchical clus-
tering algorithm motivated by CART (Classification and
Regression Trees) [9]. CART is a classification method to
create binary decision trees by iteratively partitioning a data
set into two cuboid sub-regions, each time taking only a few
dimensions into account that allow to distinguish the two
sub-sets with high accuracy. This splitting rule is typically
given by a simple threshold (also called decision stump, a
decision tree with only one node). The process is repeated
until a stopping criterion is reached.

(a) h ≈ 0.514 (b) h ≈ 0.973 (c) h ≈ 0.121 (d) h ≈ 0.998

Fig. 3. Four exemplary data sets and the resulting Hopkins indices
(n = 1000 and m = 10): (a) Randomly distributed data (b) Strong
cluster structure, sampled from two Gaussian distributions (c) Periodically
distributed data (d) “Small clusters problem” of the classical Hopkins index

CARTs are appealing due to their simplicity and the fact
that the resulting models are intuitive to humans. Addition-
ally, it is a non-parametric and non-linear method, such that
only little a-priori knowledge about the data is required,
which makes CART suitable for data mining tasks.

If there is a good method for selecting the components to
use in the splitting rule, CARTs perform very well on high-
dimensional data. For classification problems, this choice
is usually made using entropy-driven methods, selecting
that feature from which the largest information gain in
distinguishing the classes in the data set can be expected.
In our unsupervised setting, however, other techniques are
needed to select the components with the strongest cluster
structure.

A. Extended Hopkins index

The Hopkins index [10] indicates if clusters exist in a
data set and is used here to select the dimensions to be used
for splitting the data. It is computed by uniformly sampling
two sets of m << n points: a set S = {s1, . . . , sm} ⊂ X
from the dataset X = {x1, . . . , xn} ⊂ Rp, and another set
R = {r1, . . . , rm} from the convex hull around the data. The
algorithm then computes, for each point in these data sets R
and S, the distance to the nearest neighbor in X:

dR = {dri | min
j
‖ri − xj‖, 1 ≤ j ≤ n}, 1 ≤ i ≤ m (7)

dS = {dsi | min
j
‖si − xj‖, 1 ≤ j ≤ n}, 1 ≤ i ≤ m (8)

The ratio of these distances yields the Hopkins index h ∈
[0, 1] that describes how the points inside the data set are
distributed with respect to arbitrary points in the convex hull.

h(X) =

∑m
i=1 d

p
ri∑m

i=1 d
p
ri +

∑m
i=1 d

p
si

(9)

If there is no significant cluster structure, the distances inside
the data set do not differ much from those between random
other points in the convex hull (Figure 3(a)). The resulting
Hopkins index is thus near to h ≈ 0.5. A very small Hopkins
index h ≈ 0 results from data that exhibits a regular structure
(Figure 3(c)). A Hopkins index that is h ≈ 1 is a sign that
significant clusters are present in the data. Intuitively, a large
Hopkins index means that the distances from arbitrary points
in the convex hull to the nearest data point are large, while
most points in the data set have a neighbor nearby. Since
the Hopkins index highly depends on the sets R and S, it is
recommended to sample several different sets R and S and
average over the results.

Fig. 4. Left: A set of trajectories showing three clusters. The trajectories are
resampled using 30 samples, transformed into the local coordinate frame,
and shifted to identiacl end points. Right: Hopkins indices for each of the 30
trajectory components. The clusters in this example can be extracted using
only the components 10-15 with Hopkins-Indices significantly above 0.5.

Our experiments have shown that the classical Hopkins
index yields misleading results when being applied to data
sets with many small clusters, i.e. clusters containing only
few data points. An example of such a data set, consisting
of many clusters of only two points, is shown in Figure 3(d).
Though the Hopkins index of h ≈ 0.998 is very high, we
would not describe the data as highly clustered.

The problem arises from the fact that that all points have
one very close neighbor, while the overall distances dR are
rather large. We therefore extend the classical Hopkins index
by taking not only the nearest, but the k nearest neighbors
of points ri and si into account. For k = 1, we obtain
the classical Hopkins index. Experiments have shown that
defining k = m often yields good results.

B. Clustering based on the Hopkins index

The Hopkins index serves as the criterion to select the
components used for clustering: The bigger its value, the
stronger the cluster structure we expect to find. We thus
compute the Hopkins index for each of the k = 1, . . . ,m−1
components of a set of trajectories T = {τi} as

hT = (h({δ1i }), . . . , h({δm−1i })), 1 ≤ i ≤ n (10)

where n is the number of trajectories in T , m is the number
of points per trajectory in T , and δki is the stepwise relative
progression of the i-th trajectory from point k to point k+1
as defined above.

Figure 4 shows an example set of trajectories with three
clusters (left) and the distribution of the Hopkins indices for
the 30 trajectory components (right). Most of the indices
are close to 0.5, so no strong clusters are expected in these
components. Only the components 10 to 15 have Hopkins
indices significantly above 0.5 and are thus expected to show
a significant cluster structure. In our experiments, using the
five highest Hopkins indices proved sufficient to obtain good
clustering results. At each node of our clustering tree, we
perform k-means clustering with k = 2 and the metric (5)
on these five components to obtain a dichotomization of
the data. To initialize the cluster centroids for k-means, we
sample 10% of the data and perform a pre-clustering with
randomly initialized cluster centroids.

C. Stopping Criterion

The proposed clustering algorithm requires a criterion to
decide when to stop adding nodes to the cluster tree. We

Algorithm: CLUSTERTRAJ

Input: T = {τi}, i = 1, . . . , n, a set of trajectories
thr, a threshold for cluster cohesion
d, the number of points to use for k-means

Output: t, a clustering tree
Static: no clusters, cluster counter (initialized to 0)
1) T ← removeOutliers(T)
2) hT ← computeHopkins(T)
3) cT ← computeCohesion(T)
4) cent← computeCentroid(T)
5) if cT < thr || ∀hi ∈ hT : hi < 0.5

t.dim = null
t.left = null
t.right = null
t.centroid = cent
t.cluster id = no clusters+ 1
no clusters = no clusters+ 1
return t

6) dim← {d dimensions with highest Hopkins index}
7) Ttmp ← {{πik} | i ∈ dim, k = 1...n}
8) (T1, T2)← k-means(Ttmp, 2, dτ)

t.cent = cent
t.dim = dim
t.left = CLUSTERTRAJ(T1, thr, d)
t.right = CLUSTERTRAJ(T2, thr, d)
t.cluster id = −1
return t

Fig. 5. Algorithm for clustering a set of trajectories.

define the cohesion within a trajectory cluster as the mean
value of the average distances of each member to each other
member:

c(T) =
1

n2

∑
(τi,τj)∈T×T

dτ (τi, τj), (11)

where T = {τ1, . . . , τn} denotes the set of trajectories within
the cluster. The clustering stops if the cohesion does not
improve significantly any more. Since the distances between
trajectories (Eq. 5), and thus also the cohesion values, are
in the interval [0, 1], a constant threshold can be used; we
empirically chose cthr(T) ≈ 0.15.

There are other methods for assessing the similarity of
data points within a cluster, most of which are based on
variance or entropy calculations. However, a threshold based
on the sum-of-cosines distance measure performed better
in our experiments. Additionally, the matrix of distances
dτ (τi, τj) resulting from (11) can be reused for detecting
outliers, which makes it computationally attractive.

D. Outlier Detection

Outliers in the set of trajectories can result from errors of
the tracking system and should be recognized and filtered to
prevent them from distorting the rest of the data. We regard
a trajectory xk as an outlier iff at least one component xik of
the vector deviates more than twice the standard deviation
σi from the mean µi, i.e.

outlier(xk)⇔ ∃i ∈ {1, . . . , p}.
∣∣∣∣xik − µiσi

∣∣∣∣ > 2 (12)

Here, the mean distances within a cluster computed by (11)
are used. If an outlier is being detected, the whole trajectory

Algorithm: CLASSIFYTRAJ

Input: t, a clustering tree
τ = (π1, ..., πl), a trajectory of length l

Output: id, the cluster membership of τ
1) if t.dim is not empty

τleft ← {{πi} | i ∈ t.dim, πi
∫
.left.cent}

τright ← {{πi} | i ∈ t.dim, πi
∫
.right.cent}

τtraj ← {{πi} | i ∈ t.dim, πi ∈ τ}
if dτ (τleft, τtraj) < dτ (τright, τtraj)

id← CLASSIFYTRAJ(t.left, τ)
else

id← CLASSIFYTRAJ(t.right, τ)
2) else

return id = t.cluster id

Fig. 6. Algorithm for assigning an unseen trajectory to a cluster given a
clustering tree.

is removed from the data set without substitution.

E. Clustering Algorithm

Figure 5 outlines the complete algorithm for clustering
trajectories. The algorithm takes a set of trajectories T
(Eq. (1)), a threshold thr for the cohesion within a cluster
(Eq. (11)), and the number of components d to use for
clustering as parameters. After outlier removal, the cohesion
and Hopkins indices as in (11) and (10) are computed, as
well as the centroid of the set T , given by the arithmetic
mean of all trajectory coordinates [steps 1) to 4)]. If the
abort criteria (cohesion below the threshold or all Hopkins
indices lower than 0.5, meaning that we cannot expect any
clusters) evaluate to true, the algorithm returns a leaf node
of the clustering tree with a cluster centroid and a cluster ID
given by a numeric value and both children and dimensions
set to null. Otherwise, the algorithm selects the d dimensions
with the largest Hopkins indices from hT and performs k-
means clustering with k = 2 on these dimensions using the
distance measure dτ (5). The result is a partition in two
clusters T1∪T2 = T , T1∩T2 = ∅ on which CLUSTERTRAJ is
recursively applied, while making the resulting trees children
of the current node.

Assigning new, unseen trajectories to a cluster can be done
with the CLASSIFYTRAJ algorithm (Figure 6). It uses the
tree obtained from CLUSTERTRAJ as a classification/deci-
sion tree, traverses it from the root to a leaf, and checks the
trajectory distances based on the d Hopkins dimensions at
each node.

V. SEMANTIC ACTION MODEL DEFINITION

Grounded Action Models (GrAMs) as introduced in [4]
are intensional specifications of a learning problem. They
list a set of features (called observables) which can serve
for predicting a certain property (called predictable). Given
a training set of observed action instances of a class like
Reaching, the system learns the relation between their ob-
servable properties and the one to be predicted. In our case,
the observable properties describe things like the manipulated
object or the hand that is used, while the shape of the
trajectory (i.e. the cluster ID) is to be inferred.

For example, the intensional model reachTrajModel is
defined as an instance of an ActionModel that is to be
learned from the training set reachTraj (all trajectories of
type Reaching) with the observables objectActedOn and
bodyPartsUsed:

owl assert(reachTrajModel, type, ’ActionModel’)
owl assert(reachTrajModel, forAction, reachTraj)

owl assert(reachTraj, type, ’Restriction’)
owl assert(reachTraj, onProperty, type)
owl assert(reachTraj, hasValue, ’Reaching’)

owl assert(reachTrajModel, observable, objectActedOn)
owl assert(reachTrajModel, observable, bodyPartsUsed)

owl assert(reachTrajModel, predictable, trajectory-Mean)

The action model is learned as a classifier on top of the
cluster assignment that uses the values of the observable fea-
tures to learn rules that explain the values of the predictable
features. These rules form the extensional action model and
semantically describe in which context a trajectory cluster is
being used. They are equivalent to a sub-class definition in
Description Logic, like for instance the class of “Reaching
actions performed with the right hand towards a cup inside
the cupboard”. These sub-class definitions are learned au-
tonomously from data as those rules that best explain the
relations in the training set. Table I gives an example of a
learned extensional model.

Action models can either be used for classification (infer-
ring the context given an observed trajectory), or for selecting
a trajectory given a certain context. An application in robotics
is the selection of an appropriate reaching trajectory in the
respective action context.

VI. EVALUATION

We evaluate the system on the TUM Kitchen Data Set [11]
which provides motion tracking and other sensory data of
20 table setting episodes performed by four human subjects.
All sequences are labeled, and we use these labels to select
trajectory segments (like Reaching) as input data for the
clustering algorithm. We use the trajectories of the left and
right hand as visualized in Figure 1.

The trajectories are first re-sampled to a length of 100
points using spline interpolation. Since the provided labels
often do not exactly match the beginning and end of a
trajectory segment, we cut off 25% of the frames at the
beginning and end of the trajectories, namely the first 16%
and the last 9%. The trajectories are then transformed into a
person-intrinsic coordinate frame defined by the left and right
shoulder SBL and SBR. This transformation only affects the
x and y coordinates, the z coordinate stays unaffected. In
the resulting representation, person-related spatial relations
like “in front of”, “left of” or “above” can be described
more easily. Since the human body is a deformable system,
there is no optimal person-intrinsic coordinate frame, but
as Figure 4 (left) shows, the shoulder-centric coordinates
yield reasonable results. Finally, the ending points of the
trajectories, corresponding to the object position, are aligned.

(a) x-y plane (b) x-z plane (c) y-z plane

(d) x-y plane (e) x-z plane (f) y-z plane

Fig. 7. Cluster assignments, indicated by the trajectory color, for Reaching
trajectories (upper row) and trajectories for LoweringAnObject (lower row).

{2,3,4,5,22}

{2,3,4,18,19}

1 {23,24,28,29,30}

2 3

{7,11,12,14,23}

4 5

Fig. 8. Clustering tree for reaching trajectories. The sets of the internal
nodes correspond to the Hopkins dimensions or dim sets used in the CLUS-
TERTRAJ algorithm. The numbers at the leaf nodes denote the resulting
cluster IDs.

A. Cluster Assignments

Figure 1 (bottom right) and Figure 7 show the trajec-
tory clusters identified by CLUSTERTRAJ for the motions
Reaching and LoweringAnObject. These results show that the
algorithm is able to distinguish different forms of trajectories
even if they are in similar regions of the environment, like
the upwards motions in clusters 1 and 4. The trajectories
for putting down objects are not as well separated as those
for reaching, but their shapes are also well distinguished.
The blue cluster, for instance, is mainly directed to the left,
while the green one points to the right.

The clustering tree for the Reaching trajectories with
five leaf nodes – corresponding to the cluster IDs –
and the four internal nodes is visualized in Figure 8.
The components which have been identified by Hopkins
analysis and which are used for clustering are listed
in the internal nodes. Interestingly, all of these points
{2, 3, 4, 5, 7, 11, 12, 14, 18, 19, 23, 24, 28, 29, 30} are part of
the first third of a trajectory, indicating that its shape is
already planned and fixed at an early stage.

B. Learned Semantic Action Models

Table I shows the associations between observable prop-
erties and the cluster IDs that are learned based on the
specification of the intensional model. The system is able
to distinguish trajectories with different meaning, though
they have similar shapes and are in similar regions of the

bodyPartsUsed objectActedOn Cluster Assignment

LeftHand

PlaceMat 3
Cup 4
DinnerPlate 4
Napkin 3
SilverwarePiece 2
Drawer 3
Cupboard 1

RightHand

PlaceMat 3
Cup 4
DinnerPlate 4
Napkin 3
SilverwarePiece 5
Drawer 3
Cupboard 1

TABLE I
EXTENSIONAL ACTION MODEL FOR Reaching MOTIONS

environment like reaching for a cupboard handle (Cluster 4)
and taking an object out of that cupboard (Cluster 1). For
some objects, our algorithm also found differences in the
reaching behavior of the left and right hand, e.g. for Silver-
warePiece (Cluster 2/5 resp.). Some objects at approximately
the same position, such as Cup and DinnerPlate, or Napkin
and PlaceMat, show reaching trajectories that are too similar
for the algorithm to be discernible. Since most of the objects
are always picked up with the same hand, there is little
variation in clusters for the bodyPartsUsed property.

VII. RELATED WORK

Our work can be seen as a kind of imitation learning [12]:
Robots observe human actions, analyze and abstract the
observed data, and use them to imitate the actions. An
overview of the research in this area can be found in [13].
Recent approaches learn motions for instance as differential
equations [14] or Gaussian Mixture Models [15]. These
methods assume that the motions are explicitly demonstrated,
i.e. that everything that has been observed is to be imitated.
In contrast, we approach the problems of deciding what
to imitate and of learning in the task context: The robot
observes complete activities like setting a table and extracts
models of single motions from this data. This requires
methods to identify distinct trajectory clusters and to select
a suitable one based on its semantics.

An approach for clustering human reaching trajectories us-
ing point distribution models (PDM [16]) has been presented
by Stulp [17]. PDMs are learned by first performing a Princi-
pal Component Analysis (PCA) and then clustering the data
using the Mahalanobis distance. However, their experiments
use very clean, pre-segmented trajectories. Further, both [16]
and [17] assume that high variance implies the existence of
clusters, though the subspace obtained using PCA does not
necessarily coincide with the subspace spanned by the cluster
centers [18], especially in real-world clustering problems
without well-separated clusters.

VIII. CONCLUSIONS

We presented our system for clustering and semantically
annotating trajectories observed in human manipulation ac-
tivities. The system learns models of human motions in the
context of complete activities and is able to robustly cluster
noisy trajectory data obtained from real-world observations.
Semantic characterizations of the clusters are learned to
select an appropriate motion in a given situation.

Clustering similar motions is an important step before
learning low-dimensional trajectory representations in order
to eliminate ambiguities introduced by the different ways
an action can be performed. A cluster that contains only
trajectories of a kind is much better suited for learning e.g.
parameterizable function representations. Applications of our
models include robots imitating the trajectory a human would
use in a given situation, but also the prediction of human
motions, e.g. for human-robot interaction or motion tracking.

IX. ACKNOWLEDGMENTS
This work is supported in part within the DFG excellence

initiative research cluster Cognition for Technical Systems –
CoTeSys, see also www.cotesys.org.

REFERENCES

[1] C. Atkeson and J. Hollerbach, “Kinematic features of unrestrained
vertical arm movements,” J. Neurosci., vol. 5, no. 9, pp. 2318–2330,
1985.

[2] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz., “Opti-
mizing principles underlying the shape of trajectories in goal oriented
locomotion for humans.” in Proceedings of the International Confer-
ence on Humanoid Robots, 2006.

[3] E. Todorov and M. Jordan, “Optimal feedback control as a theory of
motor coordination,” Nature neuroscience, vol. 5, no. 11, pp. 1226–
1235, 2002.

[4] N. v. Hoyningen-Huene, B. Kirchlechner, and M. Beetz, “GrAM:
Reasoning with grounded action models by combining knowledge
representation and data mining,” in Towards Affordance-based Robot
Control, 2007.

[5] M. Tenorth and M. Beetz, “KnowRob — Knowledge Processing for
Autonomous Personal Robots,” in IEEE/RSJ International Conference
on Intelligent RObots and Systems., 2009.

[6] M. Beetz, M. Tenorth, D. Jain, and J. Bandouch, “Towards Automated
Models of Activities of Daily Life,” Technology and Disability, vol. 22,
2010.

[7] Samer Abdallah, “PLML – A Prolog-Matlab interface,” 2006,
http://www.swi-prolog.org/contrib/SamerAbdallah/index.html.

[8] J. Hartigan and M. Wong, “A k-means clustering algorithm,” JR Stat.
Soc. Ser. C-Appl. Stat, vol. 28, pp. 100–108, 1979.

[9] L. Breiman, Classification and Regression Trees. Boca Raton, Florida:
Chapman & Hall/CRC, 1984.

[10] B. Hopkins and J. Skellam, “A new method for determining the type
of distribution of plant individuals,” Annals of Botany, vol. 18, no. 2,
p. 213, 1954.

[11] M. Tenorth, J. Bandouch, and M. Beetz, “The TUM Kitchen Data Set
of Everyday Manipulation Activities for Motion Tracking and Action
Recognition,” in IEEE Int. Workshop on Tracking Humans for the
Evaluation of their Motion in Image Sequences (THEMIS), 2009.

[12] S. Schaal, “Is imitation learning the route to humanoid robots?”
Trends in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[13] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Springer Hand-
book of Robotics. Springer, 2008, ch. 59. Robot programming by
demonstration.

[14] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation, 2009.

[15] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G.
Billard, “Learning and reproduction of gestures by imitation: An
approach based on hidden Markov model and Gaussian mixture
regression,” IEEE Robotics and Automation Magazine, vol. 17, no. 2,
pp. 44–54, 2010.

[16] P. Roduit, A. Martinoli, and J. Jacot, “A quantitative method for
comparing trajectories of mobile robots using point distribution
models,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2007, pp. 2441–2448.

[17] F. Stulp, E. Oztop, P. Pastor, M. Beetz, and S. Schaal, “Compact
models of motor primitive variations for predictable reaching and
obstacle avoidance,” in 9th IEEE-RAS International Conference on
Humanoid Robots, 2009.

[18] C. Ding, X. He, H. Zha, and H. D. Simon, “Adaptive dimension
reduction for clustering high dimensional data,” IEEE International
Conference on Data Mining, vol. 0, p. 147, 2002.

