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Abstract—In the context of robotic assistants in human
everyday environments, pick and place tasks are beginning to
be competently solved at the technical level. The question of
where to place objects or where to pick them up from, among
other higher-level reasoning tasks, is therefore gaining practical
relevance. In this work, we consider the problem of identifying
the organizational structure within an environment, i.e. the
problem of determining organizational principles that would
allow a robot to infer where to best place a particular, previously
unseen object or where to reasonably search for a particular
type of object given past observations about the allocation
of objects to locations in the environment. This problem can
be reasonably formulated as a classification task. We claim
that organizational principles are governed by the notion of
similarity and provide an empirical analysis of the importance
of various features in datasets describing the organizational
structure of kitchens. For the aforementioned classification
tasks, we compare standard classification methods, reaching
average accuracies of at least 79% in all scenarios. We thereby
show that, in particular, ontology-based similarity measures are
well-suited as highly discriminative features. We demonstrate
the use of learned models of organizational principles in a
kitchen environment on a real robot system, where the robot
identifies a newly acquired item, determines a suitable location
and then stores the item accordingly.

I. INTRODUCTION

As many of the more fundamental problems in robotics (e.g.
with regard to perception, navigation and motion planning)
are being solved to a degree where we can consider the
respective components to be sufficiently reliable to form the
basis for complex tasks, the high-level reasoning capabilities
of robots will become increasingly important in the years
to come. In view of aging societies in many countries, the
field of service robotics in general and the field of robotic
household assistants in particular demands our attention. For
competent behaviour in human everyday environments to
become a reality, a deep understanding of human environ-
ments and the interactions between entities within them is a
necessary precodondition. Robots will have to reason about
everyday environments, the containers and objects these are
likely to contain, the properties and functions of objects
and their relationships to tasks and other objects in order to
achieve competent problem-solving behaviour. A multitude
of research questions arise, out of which only a tiny subset
has yet been addressed. With pick and place tasks being
addressed by many researchers at the technical level, the
question of where to place objects or where to pick them
up from, among other higher-level reasoning tasks, gains
practical relevance in robotic applications.

In this work, we consider the problem of identifying
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Fig. 1.
robot system: The robot acquires models given observations of the objects
found within its environment. In order to determine a suitable storage
location for a given object, it identifies the class to which the object
belongs and performs inference over the model using, in particular, features
pertaining to the similarity between the object and the other objects already
stored in the environment.

Application of models representing organizational principles on a

the organizational structure within an environment, i.e. the
problem of determining organizational principles that would
allow a robot to infer where to best place a particular,
previously unseen object or where to reasonably search
for a particular type of object given knowledge about the
object type and past observations about the allocation of
objects to locations in the environment. In particular, we
consider kitchen environments in which various utensils,
food preparation devices, foodstuffs and food ingredients are
typically assigned to storage locations such as cupboards,
drawers, refrigerators and working surfaces. Given a set of
previously observed objects with their associated storage
locations, the robot is to acquire models that would allow
it to, for instance, reasonably allocate each of the objects
it might find within a shopping bag to appropriate storage
locations (see Figure 1). As far as the granularity at which we
solve the problem is concerned, we distinguish only between
the various storage locations but not the placement within
these storage locations. Furthermore, we are concerned only
with capturing the actual storage locations of objects, not the
task-dependent locations of objects that might change over
time as actions are carried out.

We believe that for an organizational principle to be
discernable (to robots or humans) at any given location,
the objects placed at the location must share certain char-
acteristics, i.e. the entropy of the random variable describing
the distribution of object properties — in some attribute
space — should ideally be low. In order to identify an
organizational principle, we must either make direct use



of a suitable attribute space or consider an aggregate in

the form of a similarity measure. At the global level, an

organizational structure will be identifiable if the attribute
subspaces pertaining to any two locations are sufficiently
different from each other.

As key contributions, we present

« the selection of suitable attributes and similarity measures
derived from an ontological knowledge base, which we
partly build up based on web resources;

« an analysis of the performance of various modelling and
classification schemes with regard to the aforementioned
allocation problem;

« an analysis of the degree to which organizational princi-
ples can be identified at the locations within the kitchens
we considered, and the degree to which there is a global
structure that sets apart the locations;

e an open source implementation of our algorithm to
solve the object allocation problem, integrated into the
KNOWROB [1] knowledge processing system.

II. RELATED WORK

There is a large body of related work that considers organi-
zational principles at a fairly coarse level, seeking to exploit
knowledge about object-room associations for the purpose of
room classification in the context of mapping and navigation
[2] or, inversely, visual search for objects given the classes
of rooms within a map [3], or both [4, 5]. Object-room
associations are typically described using logical knowledge,
e.g. represented in a description logics knowledge base [3, 6],
and/or using conditional probability distributions [4, 5, 7].
The problem we consider is qualitatively different, because
we do not assume that there is a given, globally applicable
model which captures the structure of an arbitrary envi-
ronment, regardless of, for example, the personalities and
preferences of the environment’s inhabitants. Instead, we
are interested in recovering principles based on observations
of a single environment in order to generate a model that
reflects its idiosyncrasies, capturing the unique characteris-
tics of each place instead of assigning concepts to places.
Moreover, we disregard the types of containers/rooms and
therefore do not establish object-container relationships but
rather object-object relationships that induce local cluster-
ings. While [8] also makes use of object-object relations,
the approach considers strictly spatial relations and therefore
cannot infer locations for objects that are not yet found
in the environment. Notably, relations are not considered
for the problem of identifying the most probable location
concept for a single object of interest. Moreover, the naive
Bayesian classifier used in [8] can only reasonably operate
on object types that have been observed in the training set. In
contrast, we apply semantic object-object relations in order
to determine the location of objects of types that have not
previously been observed. These semantic similarities can
be seen as an abstraction from the object types and thereby
achieve a generalization that allows us to apply our model
to object types that were not present in the training data.

Fig. 2. Examples for groups of objects found in several kitchens

III. ORGANIZATIONAL PRINCIPLES

To acquire a notion of what might constitute an organi-
zational principle in real-world kitchen environments, we
analyzed photographs of kitchens (see e.g. Figure 2) as well
as blogs' and videos from the Internet. Focusing on the
questions of where objects are located, which objects are
grouped together and why, our analysis of this data led to
the following prevalent organizational principles:

o Class: Most places contain objects that belong to similar
classes as they might appear in a taxonomy. For example,
there is often a distinction between food and non-food
items. More specifically, most people store, for exam-
ple, prepared food, ingredients, spices, dishes, cutlery or
kitchen utensils at separate locations (see Figure 2).

e Physical Constraints: Objects are often placed with re-
spect to constraints imposed by their physical properties.
For example, large items can obviously be placed only
at locations that provide sufficient space, perishable items
are stored in a fridge or freezer, objects that can easily be
stacked (e.g. different kinds of plates, see Figure 2) are
placed on top of each other.

o Purpose: Objects are often grouped according to the
purpose they serve. For example, sugar and coffee beans
are used to make coffee and therefore may be placed
close together. Similarly, all ingredients used for baking
are often found in the same place. In Figure 2, objects
needed to prepare hot drinks are grouped together (e.g.
teabags, coffee and coffee filters).

We also discovered the following additional organizational

principles but found them to be less relevant:

o Packaging: Oftentimes, large packs of products not in-
tended for daily use are kept in stock, located at different
places than single products intended for immediate use.
For instance, a single bottle of beer may be kept in the
fridge while a crate may be stored elsewhere.

le.g. http://cakescraps.wordpress.com/2010/01/02/organizing-your-fridge/
and http://www.beruly.com/?p=279
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Fig. 3. Excerpt of the ontology generated from the category structure of
the germandeli.com shopping website

o Safety: Some people place items in lower compartments
because they might cause injury as a result of falling from
a high location. Similarly, food items are not usually stored
together with items that could spoil them.
The principles pertaining to class, physical constraints and
packaging were also considered to be relevant for object
placement in grocery stores [9].
All the above criteria can be reasonably translated into
similarity measures between pairs of objects.

IV. ONTOLOGIES

A robot that is to learn about the structure of its en-
vironment and the objects located therein requires large
amounts of background knowledge about all the objects it
could potentially encounter. Such background knowledge can
be conveniently represented within an ontology containing
concepts (classes) for all the relevant types of objects as
well as their attributes and relations.

Specifically, we extended the KNOWROB ontology [1],
which uses the Web Ontology Language (OWL) as a repre-
sentation formalism and incorporates parts of the OpenCyc
upper ontology [10]. KNOWROB extends the OpenCyc on-
tology with more detailed knowledge about the household
domain. For the task at hand, we require the ontology to
contain information about a multitude of manufactured prod-
ucts found in kitchen environments — particularly foodstuffs.
Manually encoding such knowledge for hundreds of objects
is a tedious task, but it can be automated: Online shops pro-
vide very similar information, though not represented as an
ontology. We thus implemented a system that automatically
translates the category structure of a shopping website, in
our example germandeli.com, into a class taxonomy in the
knowledge base: For example, Dallmayr Prodomo Coffee

is represented as a sub-class of Dallmayr coffee, Coffee
(German Brands), Beverages, and finally Groceries. Using
only the germandeli.com website, we generated an ontology
that extends the KNOWROB ontology with knowledge about
more than 7,000 manufactured products (see Figure 3 for
a small excerpt). The translation engine and the generated
ontology are publicly available as open-source software.”
In addition to the category structure, online shops also
provide detailed descriptions of the properties of products,
such as the perishability status, price, ingredients, etc. This
information is usually presented in a semi-structured way
in the form of tables or symbols, which can automatically
be translated into attributes of the respective object classes.
The product images found on the product page are used to
construct recognition models that allow the robot to both
detect these objects and to reason about their properties [11].

V. DATASETS

We gathered data about the organization within twelve dif-
ferent kitchen environments. Ten of these were acquired by
simulating the process of placing objects within a fictitious
kitchen, two were obtained by carefully annotating the object
locations in two real kitchens. We divided each kitchen en-
vironment into locations, a location representing a container
or tabletop, e.g. a cupboard, a drawer, the fridge, etc.

A. Kitchen Mockups

From our extended KNOWROB ontology, we selected 66
different concepts, to define an exemplary kitchen inventory
with a total of 152 objects (instances of concepts). We printed
each concept including a product image and the number
of its instances on a small piece of paper. We also printed
two different sketches of kitchen layouts on large sheets of
paper, marking the available containers (cupboards, drawers,
fridge) with numbers indicating locations where objects may
be placed. The first kitchen mockup had twelve different
locations, the second six. We then asked ten persons, five
for each of the two layouts, to place the 66 pieces of
paper representing the 152 objects at the different locations,
grouping them together as if they were to establish an order
in their own new kitchen. One example from this dataset can
be seen in Figure 4.

We then annotated the mapping of products to locations in
a database that we used for our evaluation (see Section VII).

Zhttp://code.in.tum.de/pubsvn/knowrob/tags/latest/comp_germandeli

Fig. 4. Kitchen mockup with objects placed at twelve different locations



The layout itself served only as a visual aid for our test
subjects, potentially improving their impression of acting in
a real kitchen and therefore the quality of the data. We did not
use information about the proximity of different places or the
proximity of places to devices like the oven or sink, although
this information might give further clues for reasonable
object placement and could constitute an interesting subject
for future research.

B. Real Kitchens

We gathered two additional datasets from real Kkitchens,
where we manually annotated all objects along with the
location at which they were placed. We then added any
missing product classes to our kitchen ontology. Our real
kitchen datasets D,.; and D,» contain 166 and 87 different
classes with totals of 408 and 149 objects placed at 19 and
15 different locations respectively. In the real kitchens, not
all objects belonging to a single class were placed at the
same location, because the owners distinguished between
different states of objects, e.g. partially used products and
new products which do not require cooling. In our dataset,
we did not consider this distinction, moving all objects of
the same class to a single location for practical evaluation
reasons (less than seven objects relocated in each dataset); it
is not a general restriction of our approach.

VI. LEARNING ORGANIZATIONAL PRINCIPLES

Having identified the important principles in Section III, we
want to learn a model that allows us to solve the classification
task of choosing the best location for a previously unseen
object in the kitchen. We additionally want to gain insights
into the relevant organizational principles at each location in
a kitchen by analyzing feature importance.

A. Features

As outlined above, we believe that organizational principles
are governed by the notion of similarity. Similarity, however,
can be defined in manifold ways: We could consider the
similarity along any dimension, including the size, shape,
weight, colour, value, fitness for a particular purpose, etc.
of the object as features that would allow to identify the
organizational principles that are characteristic for a specific
location. Of course, we can also consider aggregates of the
aforementioned similarities that consider an arbitrary number
of dimensions at the same time.

In our experiments, we consider the following features, all
of which correspond to principles identified in Section III:
o WUP similarity: a semantic degree of similarity between

concepts in an ontology (where concepts in the ontology

correspond to types of objects); it gives an indication of
how similar the types of objects are.

e Purpose: what the object can be used for, as defined
through super-concepts in our ontology to which the
type of the object belongs (four binary features indicat-
ing whether the object is a FoodVessel, PhysicalDevice,
FoodOrDrink or FoodIngredient)

Root

SpatialT@ dept_thCS)
DrinkingVessel
( Glass >

SodaGIass

depth(Cy)
=4

depth(C,)

LCS -2

Up)

Example for path lengths used to calculate the WUP-Similarity

1

Fig. 5.

e MealRelevance: five binary features indicating whether
the type of object is typically used for Breakfast, Prin-
cipalMeal, Coffeebreak, Snack, Sandwich

o Size: discretized size of the object according to its largest
dimension, size € {s, m, 1}

e Shape: discrete values for the shape of the object, shape €
{box, cylindric, flat, bag, other}

The WUP similarity is one particularly versatile similarity

measure. It was originally defined by Wu and Palmer in [12]

in the context of automatic translations. For two concepts

in an ontology, it defines a similarity value in the interval

[0; 1], taking the depth of the concepts and the depth of their

lowest common super-concept (LCS) into account:
depth(LCS(C1, C2))

1 (depth(Cy) + depth(C2))

The reflexive case is defined as wupSim(C,C) = 1.

The computation is illustrated in Figure 5, show-

ing a simplified version of our kitchen ontology with

ngFS1m\§vC0ffeeCu , SodaGlass) = 0.5.
UP 51m1 arity’s versatility is due to the flexible

ways in which we can define concepts in our ontology.
Concepts can have multiple super-concepts, creating different
subtrees in the ontology that correspond to distinct aspects of
a particular type of object. For example, a refrigerator can be
seen as an electrical household appliance, a cooling device,
or just as a box-shaped container. Depending on the situation
at hand, each of these views may be more or less relevant.
The different sub-trees in the ontology lead to multiple
connections between two concepts, each having possibly
different lengths that correspond to the semantic distance
in that particular respect. The WUP similarity typically
computes the minimum of all these distances because it
considers the lowest common super-concept (LCS).

The structure of the ontology thus influences the computed
similarity values. Note that the ontologies we used were
not specifically designed for the computation of similarities.
Rather, we directly extended an existing ontology with
classes that were automatically derived from an online shop’s
website, as described above. Since the distances computed
from this ontology appear to be meaningful to humans, it
seems to be close to a “natural ontology” of household
objects.

wupSim(C1, C2) =

ey



We visualize WUP similarities in Figure 6, where we
show an excerpt of a graph containing a small subset of the
concepts from one of our real kitchen datasets. We defined
a distance measure M;; := 1 — wupSim(C;, C;), calculating
the distances between all pairs of concept and using multi-
dimensional scaling to visualize the distance matrix M in
two dimensions. Concepts located close to each other in
the graph have high pairwise similarity (low distance). Each
shape/color indicates a different location where objects of
the corresponding concepts are stored in our dataset. We
observe that most concepts found at the same location are
located in clusters separate from the others, which indicates
high discriminative power of the WUP similarity for our
classification task.

We refer to the group of products located at one place as
a location. Based on the WUP similarities between pairs of
objects, we define two similarity measures between a single
object O and a location L as follows:

maxWup(O, L) = Imax wupSim(class(O), class(0O"))  (2)
e

Z wupSim(class(O), class(0"))

avgWup(O, L) = 7]

3
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B. Classifiers

We now describe the classifiers we tested for the task of
allocating an object to its most appropriate storage location.
For our classifiers, we use one avgWup and one maxWup
feature for each location, unless noted otherwise.

1) Maximum WUP Similarity: The first set of primitive
classifiers return the location with the maximum WUP sim-
ilartiy between the object and the location. We define two
classifiers, one using the maximum avgWup, the other using
the maximum maxWup similarity. The latter is equivalent to
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Fig. 6. Visualization of pairwise distances between concepts, based on the
WUP similarity. Each shape/color indicates a location in the kitchen.

returning the location that contains the most similar object

with respect to WUP similarity.

2) Decision Trees: We applied unpruned C4.5 decision
trees with the discrete and continuous features described in
section VI-A. We use the implementation from the Weka
machine learning suite [13] called J48.

3) Boosted Decision Trees: We applied AdaBoost (Weka
implementation called AdaBoostM1) with pruned C4.5 de-
cision trees (J48), using the Weka default parameters.

4) Support Vector Machine (SVM): We used the Weka
SVM implementation called SMO with polynomial kernels
and the default parameters (C' = 1).

5) Naive Bayes: In a naive Bayesian classifier, the WUP
similarities, as continuous features, can be treated in various
ways. The authors of [14] compare different methods of
handling continuous variables, including discretization and
the approximation by a normal distribution. They conclude
that no method systematically outperforms the others and
propose a strategy to automatically select the best one. [15]
presents an empirical study on the influence of dependencies
on the error of naive Bayesian classifiers and conclude that
they work best not only on completely independent features
but also on functionally dependent features. We therefore
compare three variants in our tests:

o NB discrete: We used k-means clustering to discretize each
of the continuous features with k£ = 5.

e NB continuous: We approximate the distribution of each
continuous feature with a Gaussian, increasing the vari-
ance by 0.05 to avoid overfitting.

o NB soft: We treat the degree of similarity as a degree of
belief, using a boolean variable for each continuous feature
and applying soft evidential updates (analogous to [16]) to
compute posterior probabilities.

An interesting topic for future work would be to test kernel

methods instead of a single Gaussian to approximate the

distribution of the continuous features, for example the

nonparametric kernel density estimation presented in [17].
When interpreting similarity values as degrees of belief,

we intuitively want to have the minimum similarity corre-

spond to “not similar”, the maximum similarity to “similar”
and values in between to “similar to some degree”. Most

WUP similarities in our dataset are approximately between

0.4 and 0.8, therefore normalization is desirable. We normal-

ize the WUP similarity features for the soft and continuous

naive Bayesian classifiers to the [0;1] interval by applying

a linear scaling on the values occurring in the training data.

Values in the test data are scaled in the same way and clipped

to the [0; 1] interval in case they exceed its limits.

C. Organizational Principles: Feature Importance Measure

In addition to the classification task, we analyze the degree
to which features are capable of defining organizational
principles at each particular location, fostering an intuitive
understanding of the principles (implicitly) represented in
a classifier. To this end, the conditional distributions of the
attributes given a location, as represented in a naive Bayesian
classifier trained on the dataset D, can be used. Within a



TABLE I
RESULTS: ACCURACY FOR ALL CLASSIFIERS ON BOTH DATASETS

mockup kitchens real kitchens
avgWup and maxWup all features avgWup and maxWup all features

mean std mean std Dy Do mean Dy Do mean

max. avgWup 77.45% 20.85% — — 48.19% | 70.24% | 59.22% — — —

max. maxWup 87.52% 17.91% — — 72.29% | 71.43% | 71.86% — — —
DecisionTrees 86.61% 12.46% 88.12% | 14.16% 84.94% | 73.81% | 79.37% | 79.52% | 69.05% | 74.28%
Boosted DecisionTrees | 87.68% 13.95% 89.50% | 9.92% 84.94% | 71.43% | 78.18% | 80.72% | 69.05% | 74.89%
SVM 77.46% 24.11% 89.49% | 17.68% 57.23% | 69.05% | 63.14% | 73.49% | 76.19% | 74.84%
NB Discrete 78.37% 15.64% 85.69% | 15.56% 50.00% | 50.00% | 50.00% | 57.83% | 64.29% | 61.06%
NB Continuous 69.97% 28.63% 82.61% | 17.75% 41.57% | 58.33% | 49.95% | 60.24% | 63.10% | 61.67%
NB Soft 42.16% 39.38% 82.32% | 18.73% 13.86% | 50.00% | 31.93% | 65.66% | 59.52% | 62.59%

given location L, there is certainly structure with respect
to a particular feature F' if the conditional distribution of
the feature given L exhibits little entropy. Thus, the degree
to which F' defines an organizational principle at L can be
computed as the inverse normalized Shannon entropy,

L sedomr) P (F=F[L)log(Pp(F=f|L))
log(|dom(F)])

IR(L) =1 “)
where dom(F') is the domain of F', the numerator is the
entropy of the distribution over dom(F') and the denomina-
tor is the maximum possible entropy (uniform distribution
over F’s domain). We thus obtain an importance value in
the interval [0;1], with low values (high relative entropy)
representing low importance and high values (low relative
entropy) high importance.

In order to analyze the discriminative power of the various
aggregated features, we compute the Hellinger distance [18]
HZE € [0;1] between the distributions of a feature F' given
the locations L1 and Lo as follows

Hg (Ly, L2) = \/1 — > VPo(F=f[Li)Po(F=f]Ls) (5

fedom(F)

As a measure of distribution dissimilarity, the Hellinger
distance is an adequate indicator for feature relevance [19].
We average Hellinger distances across all pairs of locations
(from the dataset’s set of locations £p) and define

> >, HP(LiLj) (6

-1
7 (F) = <|/;2D|>
L;eLp LjeLp,i<j

VII. EVALUATION

We tested our classifiers using two different sets of features
on both of our datasets. We first describe our experimental
setup and then present and discuss the results.

A. Experimental Setup

We performed experiments for the datasets presented in Sec-
tion V using the eight classifiers defined in Section VI-B. For
each classifier and dataset, we performed two experiments,
one using a feature vector containing just the maxWup and
avgWup features and one using a feature vector containing all
the features in an effort to determine the power of the WUP
similarity when applied to various types of classifiers. In each
experiment, we performed leave-one-out cross-validation, i.e.
for each class of objects, we removed all of the objects
belonging to the class from the kitchen for training and

used our classifiers to infer the location at which the object
should be stored. A classification result is considered correct
if the predicted location is the one at which the object
was originally located. If a location contained only objects
of a single class, we skipped this class during leave-one-
out crossvalidation as our classifiers would have no training
samples for that particular location.

B. Results and Discussion

We list the mean and standard deviation of the percentage
of correctly classified objects (accuracy) for our dataset of
mockup kitchens and the accuracy values and their mean for
our real kitchen datasets in Table I.

From these results, we conclude that the features based
on WUP similarity are, indeed, highly discriminative. Using
the maximum max Wup similarity alone yields an accuracy of
88% and 72% for the mock-up and real kitchens respectively.
This coincides with the human intuition that placing an object
at the location where the most similar object is located would
be a reasonable strategy.

In our dataset containing the ten kitchen mockups, adding
additional features and using more sophisticated classifiers
like SVMs, (boosted) decision trees and naive Bayes yields
only a small improvement, if any, with boosted decision trees
using all features yielding the best results (90% accuracy).

In the more complex scenario of the real kitchen dataset,
however, (boosted) decision trees and SVMs are able to
improve upon the simple maxWup classifier by up to 8%.
It is interesting to note that we get the best results with
decision trees using only the WUP similarities. The semantic
similarity measure is sufficiently powerful to obtain a correct
classification rate of 79% in a real kitchen. In many ways, the
real-world environment is a more complex scenario, because
object placement may be influenced by additional spatial re-
strictions and convenience considerations (e.g. highly similar
objects are not always placed at a single location because no
container is large enough to hold them all). Such constraints
were not considered in our mockup experiments.

It is important to realize that a classification rate close
to 100% may not be possible in practice. First, a limited
subset of objects in real-world environments may indeed
have been placed arbitrarily (for reasons such as lack of
time or laziness), inducing noise in the data. The underlying
principles would therefore be neither possible nor desirable
for us to model. Second, several objects of one class could
reasonably be placed at more than one location, yet our
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Fig. 7. Average feature importance (I I«Q (L)) for the 12 different locations
(x-axis) in the mockup kitchen dataset. High values indicate structure at a
particular location with respect to a particular group of features.

evaluation considers only one of them as correct. Given
probabilistic models like our naive Bayesian classifiers, we
could have considered locations that received a probability
higher than a certain threshold as correct, but we did not
follow this approach because the results would hardly have
been comparable to the other classifiers.

Since the organization of an environment such as a kitchen
is likely to change over time, it can be necessary to retrain
the classifiers that actually require a learning phase. This is,
however, not an issue, as in all cases, learning times were
negligible.

We now analyze the degree to which there is discernable
organizational structure at the various locations in a kitchen.
In Figure 7, we present a plot showing the importance mea-
sure T2 (L) defined in Section VI-C for one of the kitchens
from our mockup dataset. A photograph of that kitchen
layout is shown in Figure 4. We reduced the importance
values for our twelve avgWup, twelve maxWup, four purpose
and five purposeMeal features to four average values, one for
each set of features. The plot shows that all features except
size are very prevalent at location 3. In our dataset, this seems
reasonable, because the location contains cooking pots and
pans, which are similar with respect to most aspects with the
exception of size. At location 2, feature importance values
are low, because it represents the fridge, which contains
the greatest variety of different products. Looking at the
prevalent feature values at locations with high importance
gives us some human-readable indication of the organization
principles, e.g. “FoodVessel, PhysicalDevice, PrincipalMeal,
shape: other” for location 3 or “FoodOrDrink, Breakfast” for
location 4, which contains breakfast cereals.

In order to analyze the discriminative power of the various
features, we present in Figure 8 the Hellinger distances of
feature distributions averaged across all pairs of locations in
our mockup kitchen dataset. (The graph for the real kitchen
dataset is very similar and was omitted for brevity).

We observe that, as expected, the WUP similarities have
the highest average Hellinger distances, which means that
among the features we considered, they are most well-suited
for a discrimination between places.

1.0

0.8 - 1

1
maxWup mealRelevance Purpose

avgWup

shape size

Fig. 8. Mean and standard deviation of the Hellinger distance-based

importance measure a" (defined for feature groups by taking the average)
for the ten kitchens in our mockup kitchen dataset

VIII. DEMONSTRATION

In order to show the applicability to a real robot system,
we integrated our methods into the KNOWROB knowl-
edge processing system’. In Figure 9 we show the system
overview. The high-level control layer of the robot system
can use a Prolog-based tell-ask interface to query the knowl-
edge base and, in particular, to infer suitable storage locations
for items, given information about the environment and the
storage locations of objects that were previously perceived.
All the necessary background knowledge is represented in
the KNOWROB kitchen ontology, which was augmented
with additional data from the website germandeli.com, as
explained in Section IV.

Our methods were used in a demonstration performed
during the CoTeSys Spring Workshop 2011, where the PR2
robot TUM-James was given the task to store newly acquired
items in appropriate locations. In a simulated shopping
sequence, TUM-James first placed items in a shopping

3We provide an open source implementation of our algorithm to solve
the object allocation task as an extension to the KNOWROB system [1] at
http://code.in.tum.de/pubsvn/knowrob/tags/latest/comp_orgprinciples/
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Fig. 9. System overview: Integration of our methods into the KNOWROB
knowledge processing system




basket and then emptied the basket on a tabletop. It sub-
sequently identified the objects based on visual models it
had previously acquired from product images, determined
the ontology concepts to which the items belong and sub-
sequently inferred storage locations, given knowledge about
the locations of other objects and their attributes, using the
techniques we described above. For the demonstration, we
chose the simple maximum maxWup inference because it
requires no training and still performs well. Excerpts of this
demonstration can be seen in the accompanying video and
in the image sequence shown in Figure 10.

Fig. 10. Pictures of the live demonstration: The robot empties the shopping
basket and identifies the categories to which the items belong. It then infers a
suitable storage location given its knowledge of the environment and places
the object accordingly.

IX. CONCLUSION AND FUTURE WORK

In this work, we have addressed the important task of
identifying structure in human living environments — a task
that will become increasingly relevant as robots begin to
assume their role as household assistants under real-world
conditions. We considered the task of allocating objects
to likely storage locations and demonstrated its practical
implementation in a real robot system.

The allocation task can reasonably be viewed as a classi-
fication task, and we thus analyzed the suitability of various
classification schemes. Our thesis that organizational princi-
ples can be viewed as manifestations of clusterings that are
governed by similarity was confirmed in our experiments,
and the semantic similarity measure that we proposed based
on WUP similarity proved to be highly informative. Average
classification rates of at least 79% could be reached even in
real-world scenarios, and standard classifiers such as support
vector machines and (boosted) decision trees proved to be
adequate. Naive Bayesian classifiers performed less reliably,
but we could exploit their probabilistic semantics to gain
additional information about the structure of the problem.

In future work, we intend to include more features that
will consider, for example, different states of objects, spatial
relations between the containers in an environment and a
more fine-grained representation of locations, such that we
can model the concrete spatial configuration within specific
locations. Furthermore, we plan to address the problem of
transferring our approach to the learning of organizational
principles in other everyday environments.
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