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Abstract— People perform daily activities in many different
ways. When setting a table, they might use a tray, stack plates,
stack cups on plates, leave the doors of a cupboard open when
taking several items out of it. Similarly flexible behavior is
desired when mobile robots perform household tasks. Moreover,
they should perform actions in a way that they are accepted
by the people, for example by showing human-like behavior.

In this paper we propose to extend a transformational plan-
ning system with models characterizing the behavior produced
by the different plans in the plan library. These models are used
by the robot to select a plan that resembles human behavior.
In addition to acting more human-like, this helps the robot
choose good plans for a task by imitating humans instead of
performing exhaustive search.

We show the feasibility of this approach using a household
robot application as an example and present empirical results
on the classification accuracy in this domain.

I. INTRODUCTION

Mobile service robots are becoming more and more dex-
terous, and the tasks they can accomplish change from simple
navigation to complex mobile manipulation. Plans for such
complex activities need to describe various actions, action
parameters, the object to be manipulated, etc. This increase
in complexity makes the generation and optimization of plans
very challenging since many more influence factors have to
be considered, and since many more options exist how to
adapt the task specification.

Considering only navigation, optimizing a plan means
smoothing the path so that it becomes shorter or can be
traversed with higher speed. The influence of a different
plan policy on the robot’s performance can quite easily be
predicted. For mobile manipulation tasks, however, the robot
has far more choices: Should it carry a whole stack of plates
at once? How about using a tray or a container? Is it worth
fetching the tray from another part of the kitchen? Our
robot can adapt its plans using transformation rules which
correspond to these abstract decisions.

The example in Figure 1, taken from [1], visualizes the
effect of plan transformations on the performance of the
robot. In the upper part, the robot executed a default plan that
just described how to set a table in a straightforward way,
transporting the objects one by one. Obviously, this is quite
inefficient. In contrast, in the lower part of Figure 1, the robot
executed a transformed plan that made it transport plates as
a stack and use both grippers for simultaneously transporting
cups, which significantly improved the performance.

Inferring which one of these modifications has the biggest
impact on the robot’s performance is very hard and in-
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Fig. 1. Top: Default plan for setting the table. The robot transports objects
one by one which is very inefficient. Bottom: In the optimized plan, the
robot stacks plates before bringing them to the table and uses both arms for
transporting cups which greatly increases the performance [1].

fluenced by many factors, like the spatial layout of the
environment (the longer the distances, the more helps a
container) or the properties of objects (stacking plates usually
works, stacking cups is often problematic).

In the past years, we have developed several techniques
tackling the problem of generating plans for complex house-
hold tasks, in particular
• a system for generating plans from natural-language

task descriptions on web sites like ehow.com [2],
• methods for projecting and debugging these plans to

infer missing information [3], and
• TRANER, a planning system, can modify high-level

plans using a set of transformations [1].
With these modules, robots can autonomously create plans

for new tasks, fix plan flaws, and apply transformations to
optimize the performance of a plan. What is missing is a
method for efficiently determining which transformations to
apply in which order to achieve good performance.

In this paper, we propose to combine these techniques
and use observations of humans to prime the selection of
the plan that is to be executed. The robot learns probabilistic
models characterizing the behavior produced by its plans and
matches these models against the observed track of human
actions to find a plan that best matches the human behavior.

The plan that is found this way will not necessarily be



optimal for the robot. Different physiognomy and dexterity of
robot and human may have the effect that a slightly different
plan performs best. However, by priming the exploration
with human data, the robot can start from a much better
initial plan, which it can then further optimize by looking
at similar ones. This technique eliminates many options that
are in principle possible, but are very unlikely to work well,
like stacking plates on top of a stack of cups.

In addition, the approach has two other advantages: The
robot is more likely to show human-like behavior, which is
often considered comforting. And, a more technical reason,
much of the computation required for selecting a plan is
moved from the time of action execution to the time of the
plan generation. This means, the robot can pre-generate a
set of plans while still in the factory or during idle times,
for example at night, and quickly adapt its behavior when
needed.

The remainder of the paper is organized as follows: After
an overview of related work, we will introduce the main
concepts used and explain the architecture of the proposed
system. We will then discuss the transformational planning
system, the behavior representation using Conditional Ran-
dom Fields and the action observation system. Afterwards,
we evaluate the system empirically based on synthetic and
real data.

II. RELATED WORK

During the past years, the development of robotic systems
that learn complex high-level activities from very few exam-
ples has become more and more important. To be successful,
learning has to be performed on multiple levels, not just as
low-level statistical learning.

One kind of related systems are planners that consider
advice taken from humans or other robots when creating
plans. [4] work on improving the problem solving process
by cooperating with humans or other robotic agents. The
advisable planners by [5] take advice from a user while
elaborating a plan and add semantic information about the
planning elements to obtain qualitatively different plans [6].
That system also comprises various plans with substantially
different behavior to achieve the same task, comparable to
the several variants of plans for setting the table in our
system. Instead of using advice given by humans, we aim at
improving the robot plans by non-intrusively learning from
observation in our system. Work on using heuristics to reduce
the search space in planning has been done for example
by [7] for constraint satisfaction problems or by [8] who
integrate genetic programming into a classical AI planner to
improve the planning process.

Our approach can also be seen in the context of imitation
learning, if we pose “learning” as “adapting one’s own
behavior based on observations of others”. Imitation learning
is commonly applied to motions like learning hand- and
arm trajectories, for example by [9], [10] or [11]. To our
knowledge, the current system is the first one that imitates
high-level activities like setting a table.

Fig. 2. The main components of the proposed system. Plans are generated,
transformed and stored in the plan library. When they are to be executed,
the system selects the plan that best matches observed human behavior.

III. OVERVIEW

A. Nomenclature

To avoid confusions, we will briefly sum up some of the
main concepts used in this paper. A plan is a specification of
actions to perform in order to achieve a goal. The execution
of plans results in observable behavior, which includes the
sequence of actions performed, the action parameters like
grasp types, the objects that were manipulated etc.

Different plans may result in the same behavior. Espe-
cially, different agents (like humans or robots) will most
probably follow different plans, but can show the same (or
very similar) behavior.

Transformation rules transform one plan into another,
thereby changing the produced behavior. By applying trans-
formation rules, the planning system generates a set of plan
variants. These plan variants all aim at achieving the same
goal, but can do this in different ways, showing significantly
different behavior.

B. System Architecture

The main components of the system are described in
the overview picture in Figure 2. The whole process starts
with the generation of a default plan (lower left corner).
This initial plan may be manually created or automatically
generated from web sites as demonstrated in [2] and [3].
These default plans specify the main plan steps to achieve a
goal, but usually fail to perform the task efficiently.

To create new variants of a plan, which show different
and potentially more efficient behavior, the planner TRANER
is equipped with a set of transformation rules, depicted by
the diamond-shaped blocks in Figure 2. These rules can be
applied in different combinations, leading to a tree of plan
variants shown in the lower right block in Figure 2. Note that
the example plan library contains only one plan, represented
by the one tree structure, while real libraries feature several



plans for achieving different goals. Each node in this tree
corresponds to one variation of this plan, each edge to a
transformation rule that translates the parent plan into the
child.

Branches in the transformation tree can be linked to each
other, effectively creating a transformation graph. When
the system finds out that two sequences of transformations
resulted in identical code (e.g. the application of first trans-
formation A, then transformation B, and vice versa), it can
fuse these nodes. This is important not to be stuck in one
branch while optimizing the plan determined by observing
humans.

Whenever it has generated a new plan variant, TRANER
projects it using the methods described in [3]. In contrast
to that system, we do not need very detailed information
about the action execution and the belief state of the robot,
some basic data about the execution, like the sequence of
performed actions, the objects that are manipulated and
the approximate positions where the actions occurred, is
sufficient. Based on these data, the system learns models de-
scribing the behavior produced by the different plan variants
and also stores them in the plan library.

The whole plan library, including the attached models, can
be generated off-line, either before the robot is deployed or,
if the plan is generated from web instructions, during the
night or other idle times. Though both the generation of a
plan and the learning of the model are rather quick and only
take a few seconds, off line computation is attractive due to
the sheer number of plan variations produced even by rather
small numbers of transformations.

Once the robot has collected observations of humans
performing the tasks which it is supposed to later do itself, it
can use the models in the plan library to select a plan variant
whose behavior best matches the observed one. Due to the
tree-like structure, the sequence of transformations that has
to be applied to the default plan can easily be determined as
the path from the root to the respective leaf.

The planner can then execute the plan, in reality or
in simulation, and evaluate the execution. If problems are
detected or if the performance is insufficient, the robot can
explore the plan space around the observed plan to find a
better plan. As opposed to the previous system, however, it
starts from a potentially much better position.

IV. TRANSFORMATIONAL PLANNING

Transformational planners generate new plans by modi-
fying existing ones by rearranging the plan steps, inserting
or removing actions or changing action parameters. This
is especially useful when basic plans exist that are to be
optimized for operation in a certain environment, like, in
our case, plans imported from the web.

A problem with transformational planning, however, is
the high branching factor of the search tree, i.e. the tree
of transformed plans. Often different transformations are
applicable, and each of them creates a new branch of plan
variants. Evaluating each transformed plan to assess its
performance can quickly become infeasible. Therefore, we
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Fig. 3. Two state automata visualizing the behavior generated by (a) the
default plan and (b) a plan where plates are stacked. The difference in
behavior created by the transformation is obvious: a long sequence of actions
is split up, groups of stacking and de-stacking actions emerge.

propose to prime this selection process with observations of
human behavior and evaluate only plans in an environment
around the selected one.

Plans are modified by applying transformation rules. An
applicability condition specifies which plans a rule can be
applied to, the rule describes how the plan is to be changed:

OutputP lan← InputSchema :
ApplicabilityCondition

Transformation rules can significantly change the behav-
ior, e.g. re-arrange actions, insert actions for using containers
to transport items, or move actions like opening or closing
a cupboard to the beginning and end of an action sequence.

The plan library stores the transformed plans until they are
executed. Each plan has a model attached that can be used
to decide if observed behavior matches the one generated
by that plan. If that is the case, this plan will be chosen
for execution. If no matching plan can be found, the system
selects the default plan for a task.

The system builds on the transformational planner
TRANER and extends it with modules for human and robot
action observation and for matching observed actions against
plan variants. A detailed description of TRANER can be
found in [1].

V. BEHAVIOR REPRESENTATION

We model behaviors produced by plans on the abstraction
level illustrated in Figure 3. At this level of abstraction, the
behavior generated by humans and by robot plans becomes
very similar and can be matched against each other.

Assume we have two sets of plan variants for one or sev-
eral plans: Pr = P 0

r , ..., P
k
r for the robot, Ph = P 0

h , ..., P
l
h

for the human. Human plans are in general not observable, so
the robot cannot directly match the plans, but has to compare
them based on the behavior they produce. Let thus B be the
set of behaviors that can be produced by the plans in Pr and
Ph. If a plan variant produces a certain behavior, we denote
this by produces(P i, Bi).

Given that behavior Bi belonging to plan plan P i
h has

been observed, the goal is to find the plan P j
r that most

likely generates the same behavior:

argmax
P k

r ∈Pr

(P (produces(P k
r , B

i))) =: P j
r (1)



Fig. 4. CRF independence graph.

For this purpose, we use Conditional Random Fields
(CRFs) [12]. Conditional Random Fields are undirected
graphical models that are conditioned on an observation
sequence x. They have some useful properties for this task:
As discriminative models, they represent the conditional
probability p(y|x) of a sequence of states given the ob-
servation instead of the joint probability p(y,x) of states
and observations. Therefore, in contrast to typical generative
models, it is not assumed that the observations are indepen-
dent and thus allows for using correlated and overlapping
features. In the following, we will use the notation of [13].

Let x = (x1, ...,xn) be the observation and y =
(y1, ...,yn) the sequence of labels assigned to the obser-
vation.

The probability is represented as a the normalized product
of potential functions ψc of the random variables sc inside a
clique c ∈ C. This yields the general formulation of a CRF:

p(y|x) =
∏

c∈C ψc(xc, yc)∑
y′
∏

c∈C ψc(xc, y′c)
(2)

=
1

Z(x)
∏

c∈C ψc(xc, yc) (3)

Z(x) =
∑

y′
∏

c∈C ψc(xc, y
′) (4)

The most commonly used form of CRFs are linear-chain
CRFs, whose independence graph is shown in Figure 4, and
which can be written as the product over the n factors in the
factor graph

p(y|x) =
1

Z(x)

n∏
j=1

ψj(xj , yj , yj−1) (5)

If we assume the potential functions to be an exponentiated
sum of feature functions fi (yi−1, yi,x, j) that are weighted
by the values λi

ψj(x,y) = exp

(
m∑

i=1

λifi (yj−1, yj ,x, j)

)
, (6)

we can reformulate the equation of the CRF as the exponen-
tiated, normalized sum of feature functions

p(y|x) =
1

Z(x)
exp

 n∑
j=1

m∑
i=1

λifi (yj−1, yj ,x, j)

 (7)

Training CRFs can efficiently be done using a slightly
modified form of the forward-backward algorithm that was
originally proposed for Hidden Markov Models [14]. For
inference, the Viterbi algorithm can also be applied to CRFs.

In our system, the behavior B of a plan is characterized
by its observable events. Each single event is described

by four features: The performed action, the type of ob-
ject manipulated, its identifier, and the place where the
action was performed. The observation sequence consists
of a list of such actions, e.g. x = {(pick , cup, cup −
1 , cupboard), (put , cup, cup − 1 , table), ...}.

Each plan variant in the plan library has one linear-chain
CRF attached that represents its behavior and that can be
used for recognizing the plan. For finding the most likely
plan, the system calculates, for all plan variants in the library,
the likelihood that the observed sequence belongs to this
plan and takes the one with the highest likelihood value.
We are not primarily interested in the labels attached to the
actions, but rather which of the CRFs accepts the sequence of
observed features with the highest probability. Therefore, we
simply chose the labels to be the name of the medium-level
plan goals like “stack-plates”.

VI. ACTION OBSERVATION

In the following two sections, we describe how we col-
lected data about human activities in our kitchen setting and
about robot plans in simulation.

A. Human Activity Observation

For the observation of human actions, we used our sensor-
equipped kitchen environment (Figure 5). Laser range find-
ers, cameras, magnetic sensors at the doors and several RFID
(Radio Frequency IDentification) tag readers allow for the
detailed analysis of activities in the environment.

Fig. 5. A human setting the table in our kitchen environment, recorded
by a markerless motion capture system and the sensors embedded into the
kitchen furniture.

We used two RFID readers, one of them mounted under-
neath the table, the other one inside the cupboard where
pieces of tableware are stored. RFID readers wirelessly
identify objects based on a tag that is attached to them. Each
tag has a unique number that corresponds to an object. The
time-stamped object readings have to be transformed into a
sequence of manipulation actions. We assume that objects
that appear at a reader have been put down at that position,
and that items that are not read any more have been picked
up.

B. Robot Action Observation

For collecting the training data, the robot needs mecha-
nisms to record data of the execution of its plans. The system
described in [3] allows to do this, either as very detailed data
about every aspect of the plan execution based on a realistic



Fig. 6. The B21 robot in the kitchen, with RFID readers visible inside the
cabinets.

physical simulation, or in a rather coarse way using simple
plan projection.

Since the goal of this system is to use observations of
human actions that are obtained without intrusive sensors,
we decided to use rather abstract action descriptions, which
also have the advantage that they can obtained using the
much faster projection, eliminating the need for expensive,
time-consuming physical simulation. An excerpt from the
data we collect about the different plan variants is shown in
Table I.

time/s action object type object place
16.09 PICK PLATE PLATE-1 CUPBOARD
35.41 PUT PLATE PLATE-1 TABLE
69.11 PICK CUP CUP-1 CUPBOARD
88.23 PUT CUP CUP-1 TABLE

124.97 PICK PLATE PLATE-2 CUPBOARD
153.60 PUT PLATE PLATE-2 TABLE
189.86 PICK CUP CUP-2 CUPBOARD
216.42 PUT CUP CUP-2 TABLE

TABLE I
EXAMPLE OF THE DATA USED FOR TRAINING THE CRF.

VII. EMPIRICAL RESULTS

We evaluated our system both on synthetic data and on
data recorded from observing humans setting a table in
different ways. The first part of this section deals with the
evaluation of the classification of human actions, while the
second one discusses the performance improvement obtained
by selecting the plan observed from humans. In the exper-
iments, we used the set of plans in Table II which are in
more detail described in [1].

Note that the recognition of different plan flavors is
very challenging because all these plans comprise the same

Name Description
default transport objects one by one
cup-on-plate stack one cup on a plate
st-plates stack all plates
st-pl-cup-on-top stack all plates, one cup on top
st-pl-use-both-hands stack plates, carry cups in both hands
st-pl-one-cup-on-tray stack plates, one cup on the tray
st-pl-two-cups-on-tray stack plates, two cups on the tray
st-pl-cup-on-top-cup-on-tray stack plates, on cup on the stack, one on the tray

TABLE II
PLANS USED FOR THE EVALUATION OF THE SYSTEM.

actions, locations, and more or less the same objects that
are manipulated in a very similar order. The only way to
distinguish the different plans is to check for slight difference
in the sequence.

A. Evaluation on synthetic data

We first evaluated the system on synthetically generated
data to test how it handles the two main sources of noise:
First, RFID tags are detected in a random order when a
whole stack of objects is being picked up or put down at
once. We simulated this by randomly sampling different
event sequences for these cases. Second, the object instance
that is manipulated is undetermined until runtime, only its
type is specified in the plan. Therefore, we sampled different
orders of object instances.

For the experiments, we sampled distinct sets of data,
trained the CRF on one of them and evaluated it on the
unknown test set. The results of the classification are shown
in the confusion matrix in Figure 7.

Fig. 7. Evaluation results on synthetic data.

It can be seen that the system is well able to discrim-
inate between the almost all plan variants. Only the plans
for stacking plates with or without using both hands are
confused. Since we did not collect any data that indicates
which objects are held in which hand, these two plans are
very hard to distinguish.

B. Evaluation on Observations of Humans

For evaluating the performance in a real-world setting,
we collected data from RFID readers in our test kitchen.
Since the collection of data with human subjects is rather
time consuming and error-prone when the subjects are told
to follow a plan they would not intuitively choose (like the
default plan), we decided to collect data for only four
of the plans, while still training on the full set of plans in
the library. These four plans were default, st-plates,
st-pl-cup-on-top and st-pl-use-both-hands.

In the real kitchen, the subjects were told to set the table
for two persons, either in a natural way (which always
resulted in the equivalent to the stack-both plan, or by
acting as if they were following one of the other three plans.

Observing events for more than two persons turned out
to be difficult due to the maximum number of objects our



RFID tag readers can detect at a time, so we limited the
number of people to set the table for to two. RFID tag readers
sometimes have short interruptions in the object readings,
especially when many objects or metallic items are in the
detection range. A low-pass filter effectively eliminates these
erroneous mis-readings in a pre-processing step.

Fig. 8. Evaluation results on human observations.

The results of the evaluation in Figure 8 show that the
system confused the plan it also confused in the synthetic
data, but is still able to reliably detect three of the four plans.

C. Robot performance improvement

A good combination of plan transformations significantly
improves the robot performance. Stacking plates and using
both arms for carrying cups speeds up the plan executing
by up to 15.6%. This is exactly the plan flavor that was
intuitively executed by the human subjects. Further results
showing how plan transformations enhance robot plans and
discussing the influence of different environments can be
found in [1].

In TRANER, the best combination of plan transformations
was determined by exhaustive search, i.e. all possible combi-
nations of transformations were simulated several times and
evaluated. This approach is very likely to find the best plan,
but needs a lot of time since the simulation normally cannot
be done much faster than real time. Evaluating each plan in
the whole tree quickly becomes prohibitive with a growing
number of transformation rules.

The system presented in this work requires no expensive
simulation, but only a rather simple projection of the plan
since the features we use do not depend on the environment.
Applying the transformations and learning the models can be
done in few seconds, which leads to significantly improved
performance of the transformational planning system.

VIII. CONCLUSIONS

In this paper, we presented a method to extend a transfor-
mational planning system with methods for learning models
characterizing the behavior produced by the robot plans.
Using the system, the robot can match observed human
behavior against the plans in its plan library in order to find
the plan that best resembles the human way of performing
the task.

We propose to use Conditional Random Fields to match
the behavior produced by the robot plans to that observed
from humans. These probabilistic models are stored in the
plan library and allow the robot to quickly select a plan
amongst the various alternatives.

Technically, this approach offers the advantage of mas-
sively speeding up the selection process, which previously
suffered from severe scalability problems. Regarding its
applications, the system can be seen as a method for imitating
complex human behavior on an abstract level.

We see this system as an important step towards robots
that can act naturally in human environments. To do this,
they have to quickly adapt their behavior to perform tasks
in an efficient way, while acting as human-like as possible.
The methods proposed in this paper help robots approach
this goal.
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