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Abstract. In this paper, we discuss how networked robot architectures
can facilitate the realization, deployment, management and adaptation
of distributed robotic applications. Our aim is to modularize applications
by factoring out environment-, task-, domain-, and robot-specific knowl-
edge components and representing them explicitly in a formal knowledge
base that is shared between the robots. Robot control decisions can then
be formulated in terms of inference tasks that are evaluated based on
this knowledge during task execution. The explicit and modular knowl-
edge representation allows operators with different areas of expertise
to adapt the respective parts of the knowledge independently. We re-
alized this concept by integrating knowledge representation methods of
the ROBOEARTH project with the distributed task execution capabilities
of the Ubiquitous Network Robot Platform.

1 Introduction

More and more service robots are being developed to perform tasks like delivering
items in hospitals [1], preparing simple meals [2], or interacting with customers in
a shopping mall [3] or a convenience store [4, 5]. These robots are to be deployed
in larger numbers in different environments, and all of them will eventually face
the open-world challenge: Though all shops or all hospital rooms share common
characteristics, each is slightly different, and each will bring up novel situations
that have not been accounted for at design time.

Our goal is to develop a system to effectively manage large numbers of robots
in different locations which perform similar tasks in similar, but different, envi-
ronments. In particular, we focus on the knowledge aspect of the problem: How
can the knowledge required for performing these tasks efficiently be represented?
How can it be re-used in similar situations by similar robots? How can robots
deal with a lack of knowledge that would be required for solving a novel prob-
lem? Ideally, such a system should support simple deployment, should have low
operational costs, and should be adaptable to specific environments as well as
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Fig. 1. The modular structure of the proposed system allows different groups of op-
erators to focus on their area of expertise: Robot programmers implement the basic
functionality, application developers combine these modules to useful services, while
shop operators provide environment-specific information needed to execute the appli-
cations.

to different domains (e.g. different kinds of shops like a grocery shop or hard-
ware store), and to changes in the task (e.g. special recommendation of seasonal
products).

A decision to be made is the choice of the robot’s level of autonomy. Com-
pletely autonomous robots could operate with minimal supervision and without
a need for human operators. However, the robots will only be able to handle those
situations that have been accounted for at development time. If they are asked
about something they do not know, for example the ingredients of a product,
they cannot answer this question if this piece of information has not been put
into their knowledge base at manufacturing time. Updating the robots requires
a robotics engineer to drive to their locations and perform the changes in coop-
eration with a domain expert that knows e.g. the products and their spatial ar-
rangement in a supermarket. A tele-operated solution, on the other hand, would
require a dedicated operator per robot, which would often be too expensive, and
would require that operator to have both comprehensive domain knowledge and
knowledge about the robot’s environment configuration. We therefore aim at a
combination of both: In normal circumstances, the robots operate autonomously,
but can ask a human operator if they encounter problems.

In many cases, however, there is no single omniscient operator, but different
experts are needed to contribute their specific kinds of knowledge: The spatial
arrangement of products in the market can be provided by the shopkeeper.
An area manager can contribute knowledge about the product types and their
properties, e.g. their price or ingredients. These product properties will be the
same for many shops, so this knowledge should be shared among them. Product
recommendation patterns are often independent of the actual product types and



can therefore be implemented by an application developer for a large number
of robots at once. Updates to the robot’s low-level controllers, e.g. to program
new motions, require a robotics engineer. Figure 1 visualizes the different levels
of knowledge and the group of people that can provide it to the system.

To facilitate maintenance, it would be desirable to let these different stake-
holders update their part of the robot’s knowledge base independently: If the
product arrangement changes, the shopkeeper should be able to update it with-
out calling a robotics engineer. If new recommendation patterns are developed,
they should be deployed without having to ask the shopkeeper for help. We would
thus like to factorize these independent areas of knowledge, and would further
like to realize a distributed system that allows operators to remotely provide
their expertise.

In this paper, we present our approach to realizing such a distributed plat-
form which combines distributed task execution and supervision methods with
knowledge-sharing capabilities. To allow the adaptation of knowledge without
changing the robot’s control program, we use explicit knowledge representation
mechanisms. We realize the system using the Ubiquitous Network Robot Plat-
form (UNR-PF [6]), which provides distributed task execution and coordination
facilities as well as abstraction from the robot’s hardware and low-level capabil-
ities, and the ROBOEARTH system [7], a web-based knowledge base which con-
tributes techniques for representing and exchanging knowledge between robots.

The domain-specific, task-specific and environment-specific parts of the robot’s
knowledge are represented in a common knowledge base, but in a modular
fashion, and separate from the program code of the robot’s control program.
This way, they can easily be adapted (e.g. when the arrangement of products
changed), exchanged (e.g. to deploy an application in a different environment),
and shared via the ROBOEARTH platform. The knowledge-sharing capabilities
allow re-using knowledge in different setups (e.g. the same product ontology in
many stores) and remotely deploying updates. The abstract component interface
of the UNR-PF allows to specify generic task descriptions that can be re-used
on heterogeneous robots with similar capabilities.

2 Related work

With the rise of the concept of “Cloud computing”, which aims at off-loading
components that have high demands in terms of computation or storage to re-
mote servers which can provide the functionality in a more efficient way, the term
“cloud robotics” was coined for applications of these concepts to robotics [8].
Since then, multiple systems have been proposed that address different aspects
of the cloud robotics vision: Some of them focus on remote sensor data pro-
cessing, implementing computationally expensive algorithms in the cloud [9)].
The “PR2 Remote Lab” investigates robot teleoperation and remote control via
the Internet using a Web browser [10]. The Ubiquitous Network Robot Plat-
form (UNR-PF) deals with distributed task execution and supervision [6] on
multiple robots and sensorized devices at different locations. The ROBOEARTH



project develops a web-based knowledge base through which robots can share
information they have obtained [7]. In addition, there are attempts to make ex-
isting web- and cloud-based resources available to robots. While robot-specific
applications will first need to be established and filled with content, many appli-
cations originally developed for humans do already provide information that can
be useful for robots [11]. Examples are cloud-based object recognition systems
like Google Goggles!, on-line image and object model repositories like the 3D
Warehouse [12], and product information from shopping websites as well as task
instructions and cooking recipes [13].

With the current system, we develop a knowledge-based framework that
combines the aspects of distributed task execution, cloud-based information ex-
change, and shared-autonomy tele-operation which were previously addressed
only separately. Unlike other systems, we focus on the topics of providing knowl-
edge to the robots and sharing it among them in order to give them the ability
to act autonomously most of the time. With regard to our example scenario, we
build upon prior work on establishing a ubiquitous-sensing infrastructure in a
convenience store and using this infrastructure for guiding customers [4] and for
recommending products [5].

3 Scenario

In this paper, we consider a convenience store as example, which is equipped
with a ubiquitous sensing infrastructure and with robots that interact with cus-
tomers. The robots can help customers find the products they are looking for
and recommend alternatives if these are not available. This mock-up convenience
store is equipped with laser scanners for tracking customers and with RFID tag
readers for detecting if objects have been picked up [14]. As part of this scenario,
we will explore how semantic representations can lead to greater flexibility in
customer interaction, and how the proposed distributed infrastructure helps to
create, deploy and maintain robot applications. Figure 2 shows the definition
of a recommendation task and explains how the applications described in this
section contribute to it.

Semantic representations for product recommendation: Using semantic infor-
mation like an ontology of products and their properties, a robot can flexibly
answer questions about these products. The hierarchical structure of the ontol-
ogy provides the robot with information which products belong to a category like
Food or Stationery. Based on the represented product properties, it can answer
questions about ingredients the customer may be allergic against. By comput-
ing which products are close in the ontology, it can find semantically similar
alternatives if a product is not available any more.

Spatial knowledge for guiding customers: A semantic map contains instances
of the abstract product types and the locations where they can be found in the

! http://youtu.be/FxXBUp-4800
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Fig. 2. Example task specification for recommending a product. The call-out boxes
indicate where the proposed system contributes to the task execution.

environment. The spatial information enables the robot to point towards objects
by computing the bearing from its own position. The map can be coupled with
sensors in the environment, for example RFID tag readers, that update the
information in the map and provide the robot with an up-to-date view of which
products are still available. A graphical editor enables operators without robotics
expertise to update the environment model if the shop layout has changed.

Human operator as fall-back knowledge source: While the robots operate au-
tonomously most of the time, there may be situations in which they cannot
answer a customer’s question. In this case, they can forward the question to a
human operator that can update the robot’s knowledge, for example by adding
or removing products or by changing their properties. The human and the robot
share the same environment model that is distributed via the ROBOEARTH plat-
form; when the human updates the map in ROBOEARTH, it is directly available
to the robot as well. The required interaction with the human can be included
into the task specification as a special action that is triggered if a question cannot
be answered.

Remote adaptation and deployment of updated task specifications: In some cases,
the task specification itself needs to be updated, for instance to change the
robot’s recommendation behavior or to fix flaws in the task definition. This
adaptation can be done in a centralized fashion since the tasks the robots perform
are themselves described in the knowledge base and shared via ROBOEARTH. The
operator can adapt the specifications remotely using a graphical editor interface



and upload the updated version to the ROBOEARTH knowledge base, thereby
making it available to all robots in the system.

4 System overview

The system presented in this paper combines the distributed task execution
methods provided by the UNR-PF with the knowledge-sharing techniques of
ROBOEARTH. Figure 3 gives an overview of its main components. The UNR-
PF is used as communication middle-ware and abstraction layer between the
hardware components and service application. A special execution engine can
interpret task specification shared via ROBOEARTH and execute them on the
platform, acting as a generic service application that can be parameterized with
different task descriptions. The execution interacts with the system’s knowledge
base to resolve abstract specifications in the task descriptions to concrete param-
eters that are needed for executing the actions. A graphical interface for a human
operator facilitates the inspection, modification and creation of knowledge.

Proposed knowledge-based task execution system UNR Platform
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Fig. 3. Structure of the proposed system. Other than common task-specific service
applications, the generic execution engine can be parameterized with knowledge-based
task specifications. Control decisions are defined in terms of queries to the knowledge
base that are answered based on the robot’s background knowledge and belief state. A
human operator can be asked to provide missing information.

4.1 The Ubiquitous Network Robot Platform (UNR-PF)

The UNR-PF acts as an interface layer between hardware- and software com-
ponents on the one and service applications on the other side. The components



implement well-defined interfaces (e.g. for a Personldentification or a Reaction)
and offer this functionality to the platform via the component API. Service ap-
plications compose useful applications out of these basic building blocks. Since
all dependencies are defined in terms of the abstract interfaces, service appli-
cations are agnostic of how the functionality is provided or which components
provide it. The MowvingPlatform interface, for example, could be implemented
using a wheeled or a legged platform, which both provide the functionality of
moving the robot. Before executing a command, a service application requests
components that have the required properties from the platform and, if suitable
components are available, sends commands to these components via the service
API or waits for events generated by them. The UNR-PF draws upon differ-
ent standardized platforms and representations: The component interface of the
UNR-PF is based on the RolS standard [15]. Spatial information is encoded fol-
lowing the Robotic Localization Service (RLS) standard [16] and the CityGML
language [17].

4.2 The RoboEarth system

ROBOEARTH aims at building a “World Wide Web for Robots”, a web-based
Wikipedia-like platform for sharing knowledge about actions, objects, and en-
vironments between robots. All pieces of information stored in the web-based
are annotated with their requirements in terms of robot capabilities which are
checked when downloading them. Using these requirement specifications, a robot
can determine whether it will be able to use this information or if additional
information is required. The client-side reasoning system is realized using the
KNOowROB knowledge processing system which is used for storing knowledge,
performing reasoning, and offering a query interface to the execution engine.

In a demonstration by the ROBOEARTH project, it was shown that the tech-
niques enable robots to autonomously download information required for per-
forming simple mobile manipulation tasks like serving a drink to a human. In this
example, both the task specification, an environment map, the models for recog-
nizing the involved objects, and combined geometric and semantic object models
required for interacting with articulated objects have been downloaded. The task
has been performed by two heterogeneous mobile manipulation platforms in two
different environments [18]. The ROBOEARTH project uses the Robot Operating
System (ROS, [19]) as robot middle-ware and software distribution platform and
the Cognitive Robot Abstract Machine (CRAM [20]) framework for its execution
engine [21]. For the system proposed in this paper, we have created an executing
engine that works in the context of the UNR-PF.

The formal language used for encoding the knowledge stored in the ROBOEARTH
system is defined using the Web Ontology Language (OWL, [22]). The ROBOEARTH
ontology defines the concepts and properties that are available for knowledge rep-
resentation. It is derived from the KNOWROB ontology [23] which, by itself, is
partly derived from the OpenCyc ontology [24] that emerged as a quasi-standard
in robot knowledge representation. By re-using these existing ontologies, we en-



sure compatibility with parallel developments in this research area and can in-
corporate findings of other projects more easily.

4.3 Knowledge-based task execution

The central component of the proposed system is an execution engine that can
interpret action recipes defined in the ROBOEARTH language and execute them
on the UNR-PF. Action recipes are composed of action classes, for example
LocalizingA Person, which are linked to the corresponding components in the
UNR-PF. Before execution, the recipes are loaded and the system checks if
all required components are available, then generates a state machine from the
task description in the recipe, and starts the execution by calling the respective
UNR-PF components as specified in the recipe.

Each action in the recipe is transformed into one state in the state machine
that first requests and binds all required components using the UNR-PF, then
calls the respective commands, and finally returns their results. Depending on
the results, the execution transitions to the next regular state or to a specified
error state. Perceptual components, e.g. for person localization or identification,
are interfaced using “perception actions” that wait for events generated by the
components. The recipe can specify when these actions are to return, for ex-
ample once the first event message has been received, or the first n messages,
or after a specified condition evaluates to true (e.g. once a specific person has
been recognized). These conditions are described using OWL restrictions that
are evaluated on the robot’s knowledge base to check whether the condition is
fulfilled.

To account for the heterogeneous nature of actions and their respective re-
quirements in terms of information interchange with other actions, we developed
a flexible information passing scheme using the local knowledge base. All infor-
mation gained by executing an action is represented in the local knowledge base
using the ROBOEARTH language, including the results of sensing actions, the out-
come of manipulation actions, and information about which actions have been
performed with which parameters. This approach closely links the knowledge-
based task instructions to the robot’s belief state and allows to reason about
and integrate different sources of information like the instructions, the object
ontology, and the semantic environment map. It also facilitates the exchange of
information via the ROBOEARTH platform since all information in the system is
already explicitly represented in this language.

4.4 Interactive knowledge editor interface

We combine the execution engine with a graphical user interface that allows
human operators to extend and correct the robot’s knowledge base, to add new
objects to a map or new actions to a task, and to start the task execution on
the remote robot. The UNR-PF thereby serves as distributed platform for the
run-time coordination between the operator, the task-level controller, and the
different (robot) components that perform the task. ROBOEARTH complements



Fig. 4. Left: Semantic map visualization and editor. Right: Editor for defining the task
structure and interactive execution interface.

this by providing the robot and the human operator with a shared knowledge
base about the task to be executed and the environment the robot(s) operate(s)
in.

The two main components of the user interface are an editor for semantic
environment maps and one for robot task specifications. Both editors can either
load specifications from the robot’s local knowledge base or import them from
ROBOEARTH. The map editor can visualize and edit environment maps that
describe the spatial arrangement of objects around the robot (Figure 4 left).
In these maps, each object is described as an instance of an object class at a
specified 6D-pose in space. This instance inherits all properties specified for its
object class, and can be further annotated with additional properties. Using the
editor, objects can be added to, deleted from and moved around in the map. The
task editor can be used to create, visualize and edit task descriptions by adding or
removing actions, changing their properties, and specifying transitions between
actions. The user can specify in detail how the task shall react in nominal and
error cases using conditions for action transitions (indicated by the differently
colored arrows in Figure 4 (right)). Green arrows indicate a transition in case of
successful execution, dark red ones are in case of an error, light and dark blue
transitions are chosen depending on the outcome of a decision node, etc. During
task execution, the action editor doubles as supervision interface: The currently
executed action is highlighted, action parameters can be inspected, and the task
execution can be started and aborted.

4.5 Integration of Human Operator as Knowledge Source

We are planning to integrate the interactive editors with the task executive in
such a way that a robot can call a human operator during task execution and ask
for information that it found to be missing. The communication will be realized
using the UNR-PF by adding the human operator interface as a component that
accepts commands to acquire information. If the service application (which is su-
pervising the task execution) notices a problem, it calls the command for asking
the operator for help. The human can then download the relevant information



from the ROBOEARTH knowledge base, investigate the problem, update the in-
formation, upload it to ROBOEARTH again, and notify the service application
that the information is available.

The ability to ask for help raises the questions when to ask and what to ask
for. We consider two main cases in which interaction with an operator seems
necessary: when a query for information unexpectedly gave no results (e.g. when
a question asked by a customer cannot be answered) or when an action failed
or produced inappropriate behavior. The former case can be handled in the
context of an ongoing task by transitioning to an “interaction state” that sends
a support query to the operator, blocks until an answer has been received, and
returns to the same action to try again. This interaction scheme is indicated
in the right part of Figure 2. The latter is a more exceptional case that often
requires changing the task definition itself. It may be detected by errors thrown
by the UNR-PF, by checking if the outcome of an action is as expected (e.g.
a customer that does not move away on even if the robot considers a dialog
to be complete), or if customers or the shopkeeper complain about the robot’s
behavior. In these cases, the task specification needs to be updated and the task
needs to be restarted.

5 Discussion and Conclusions

In this paper, we discussed how a system for knowledge-enabled distributed
task execution can be built on top of existing, common platforms in order to
increase modularity, flexibility, and adaptability of robot applications. By con-
sequently separating generic functionality from environment-, domain- or task-
specific knowledge, we intend to achieve a high degree of reusability as well as
improved adaptability to novel situations. Different kinds of knowledge are ex-
plicitly represented and can be edited independently by the respective domain
experts. Control decisions are formulated as inference tasks that are evaluated
on the robot’s knowledge during execution.

Our approach involves abstraction along multiple dimensions: Abstraction
from the robot hardware and the execution context is achieved by the com-
ponents, services, and remote execution capabilities of the UNR-PF. Abstrac-
tion from the environment is obtained by encapsulating all environment-related
knowledge in a semantic map that combines spatial and semantic information
about objects. Abstraction from the executed tasks is realized by a generic ex-
ecution engine that can perform arbitrary tasks defined as combinations of ba-
sic functionality building blocks. Abstraction from the application domain can
be achieved by parameterizing generic functionality with an abstract domain
ontology. We expect this abstraction to increase re-usability of components in
different tasks and environments since individual parts of the knowledge base
can be exchanged independently. The same task description for serving a drink,
for example, should work in different hospital rooms, kitchens or offices as long
as an appropriate environment model is available.



At the time of paper submission, the interactive editor interfaces as well as
the interface to the UNR platform have been implemented. We are currently in
the process of integrating the system with the infrastructure in the “Ubiquitous
Market” experiment space and will present first results during the workshop.
Once the infrastructure has been set up, we will investigate research issues such
as the generation of informative questions and appropriate ways of presenting
the state of the environment to a remote operator in order to convey the current
situation.
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