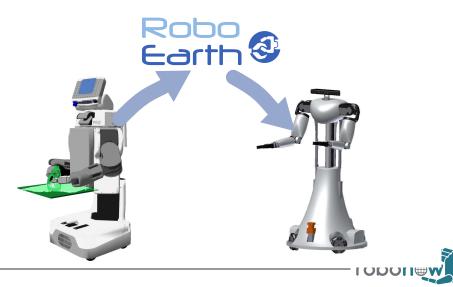
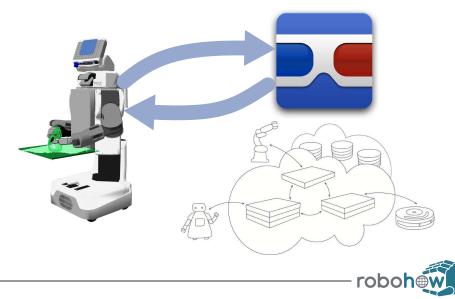
Towards Web-enabled Robots

Moritz Tenorth Institute for Artificial Intelligence University of Bremen, Germany



Use Case 1: Using the Web as Knowledge Source



Use Case 2: Exchanging Information via the Cloud

Use Case 3: Outsourcing Services to the Cloud

Use Case 1: Using the Web as Knowledge Source

The RoboHow Project

http://www.robohow.eu

Research Problems

Understanding information made for humans

Research Problems

Understanding information made for humans

▶ Natural language processing to convert into formal representation

Research Problems

Understanding information made for humans

- ► Natural language processing to convert into formal representation
- Identifying and incorporating missing information

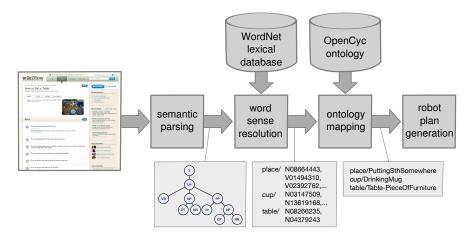
Research Problems

Understanding information made for humans

- ► Natural language processing to convert into formal representation
- Identifying and incorporating missing information
 - Logical and probabilistic reasoning to incorporate background knowledge

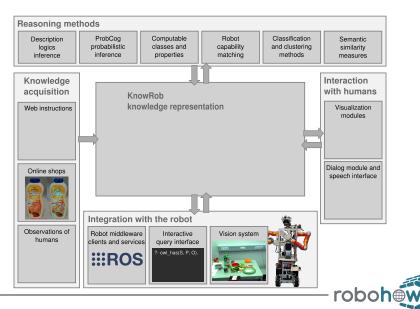
- Understanding information made for humans
 - ► Natural language processing to convert into formal representation
- Identifying and incorporating missing information
 - Logical and probabilistic reasoning to incorporate background knowledge
- Grounding abstract information in the robot system

- Understanding information made for humans
 - ► Natural language processing to convert into formal representation
- Identifying and incorporating missing information
 - Logical and probabilistic reasoning to incorporate background knowledge
- Grounding abstract information in the robot system
 - Grounding object info in perception, actions in movement descriptions


- Understanding information made for humans
 - ► Natural language processing to convert into formal representation
- Identifying and incorporating missing information
 - Logical and probabilistic reasoning to incorporate background knowledge
- Grounding abstract information in the robot system
 - Grounding object info in perception, actions in movement descriptions
- Integrating complementary knowledge sources

- Understanding information made for humans
 - ► Natural language processing to convert into formal representation
- Identifying and incorporating missing information
 - Logical and probabilistic reasoning to incorporate background knowledge
- Grounding abstract information in the robot system
 - Grounding object info in perception, actions in movement descriptions
- Integrating complementary knowledge sources
 - Convert natural-language information into formal representation as extension of a common ontology

Task instructions from the WWW


Understanding and Executing Instructions for Everyday Manipulation Tasks from the World Wide Web. Moritz Tenorth, Daniel Nyga and Michael Beetz. ICRA 2010

Demonstration: Import of natural-language instructions

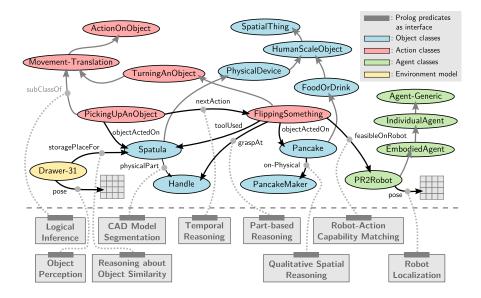
http://knowrob.org/doc/robots_and_the_internet

KnowRob: A knowledge base for robots

KnowRob: Techniques used

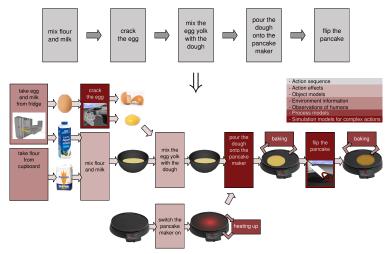
Prolog

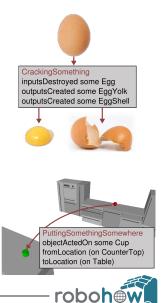
- ► Main query interface + inference engine
- Useful combination of declarative and procedural aspects


Descriptions Logics / OWL

- ► Common ontology: "Vocabulary" for describing the knowledge
- Representation of actions, semantic environment maps, object models, robot self-models, …

Procedural attachments


- Computation of qualitative information from metric data
- Integration of external data sources (e.g. vision system)
- Integration of other kinds of reasoners (e.g. OWL, Markov Logic)


Completing Instructions with Qualitative Reasoning

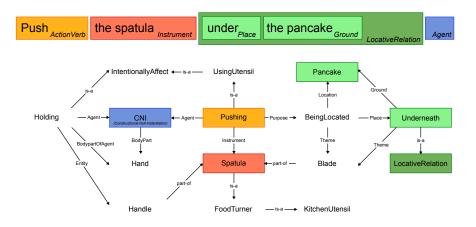
A Unified Representation for Reasoning about Robot Actions, Processes, and their Effects on Objects. Moritz Tenorth and Michael Beetz, IROS 2012


Modeling action effects

- Actions can move, split, destroy, create, join, open, and close objects, switch them on and off, etc...
- Goal: represent and reason about these interactions
- Hybrid representation of action effects:
 - Declarative specification for planning
 - Procedural rules for projection

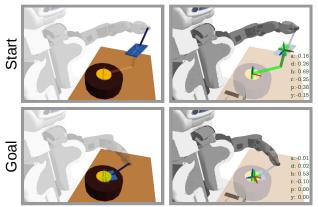
Combined representation of actions and processes

- Processes as indirect effects of actions: Heating up, melting, baking, ...
- Qualitative process representation: preconditions + effect model
- Similar to Forbus' Qualitative Process theory
- ▶ Joint planning and projection → perform an action in order to start a process



Filling Gaps with Action-specific Knowledge Bases

Filling Gaps with Action-specific Knowledge Bases


Everything Robots Always Wanted to Know about Housework (But were afraid to ask). Daniel Nyga and Michael Beetz. IROS 2012

Symbolic Movement Descriptions

Two ways of representing "putting a spatula under a pancake":

Symbolic

Control Engineering

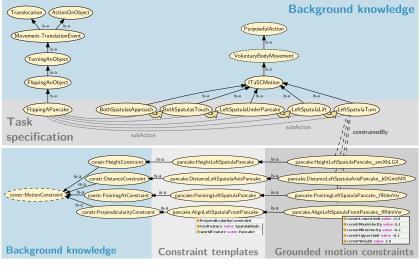
Symbolic Movement Descriptions

Two ways of representing "putting a spatula under a pancake":

 Symbolic
 Control Engineering

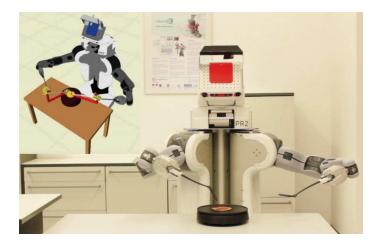
 Image: Symbolic
 Image: Symbolic

 <


- Objects
- Desired effects
- Task context

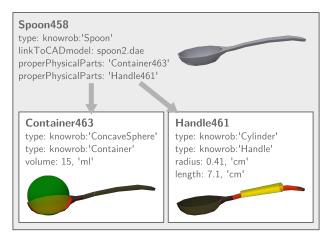
- Control frames
- High reactivity
- Dyn. & kin. models

Gap to bridge: How to associate actions with motions?

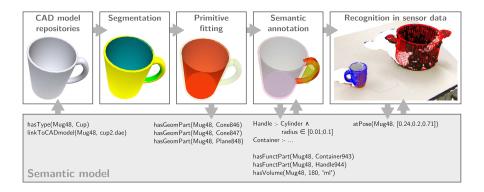


Constraints as Symbolic Motion Descriptions...

...that can also be executed


Constraint-based Movement Representation grounded in Geometric Features. Georg Bartels, Ingo Kresse and Michael Beetz. Humanoids 2013.

How to know which object part to control?


Hypothesis: Functional parts can serve as interlingua to translate between symbolic and geometric object models

How to know which object part to control?

 Hypothesis: Functional parts can serve as interlingua to translate between symbolic and geometric object models

Grounding Action Knowledge in Object Models

Decomposing CAD Models of Objects of Daily Use and Reasoning about their Functional Parts. Moritz Tenorth, Stefan Profanter, Ferenc Balint-Benczedi and Michael Beetz, ICRA 2014

Identification of Geometric Primitives

- ► Currently: Planes, spheres, cones/cylinders
- Two-fold representation as
 - annotation of the surface mesh
 - ▶ instance of the primitive class (e.g. 'Cone') in the knowledge base
- ▶ Forms the basis for the application of logical rules

Object representation

Planar surfaces

normalDirection (vector) objectLongSide (vector) objectShortSide (vector) areaOfObject (float) areaCoverage (float) SupportingPlane (computable class)

Cones/cylinders

radius (average radius, float) maxRadius (float) minRadius (float) volumeOfObject (float) lengthOfObject (float) longitudinalDirection (vector) areaOfObject (float) areaCoverage (float)

Spheres

radius (float) volumeOfObject (float) areaOfObject (float) areaCoverage (float) ConcaveTangibleObject (computable class)

Containers volumeOfObject (float) longitudinalDirection (opening direction, vector)

Handles

Handle (computable class)

Semantic Annotation of Object Parts

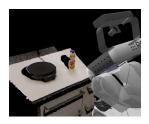
- ▶ Bottom-up: Segmentation and geometric primitive fitting
- Top-down: Identify semantic parts defined in terms of geometric primitives using logical rules
- Advantage of rule-based definitions: Composability!
- Currently semantic annotations for
 - Handles, containers, supporting planes, bottle caps

Selecting appropriate containers

```
?- owl_has(Obj, kr:properPhysicalParts, C),
        owl_individual_of(C, kr:'Container'),
        rdf_triple(kr:volumeOfObject, C, V),
        V > 0.001.
Obj = kr:'pot1',
C = kr:'ContainerArtifact_FqDosfsb',
V = 0.00293
```


Finding grasping points

```
grasp_point(Obj, GraspPoint) :-
  rdf_triple(kr:properPhysicalParts,Obj,Handle)
  rdfs_instance_of(Handle, kr:'Handle'),
  annotation_pose_list(Handle, GraspPoint).
```

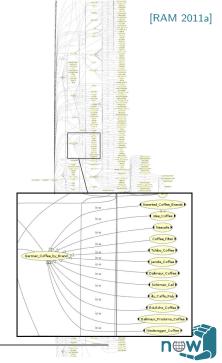
Determining which surface to pour batter on

```
pour_onto(Obj, Part) :-
  findall(A-P,
    (rdf_triple(kr:properPhysicalParts,Obj,P),
    rdfs_instance_of(P,kr:'SupportingPlane'),
    rdf_triple(kr:areaOfObject,P,A)),Planes),
  keysort(Planes, PlanesAsc),
  last(PlanesAsc, _-Part).
```

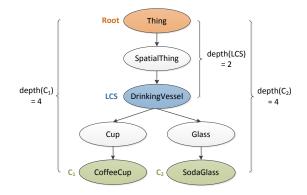
```
?- pour_onto(kr:'maker1', Part).
Part = kr:'FlatPhysicalSurface_UosqOAfb'.
```


Identifying bottle caps

?- bottle_cap(kr:'pancakemix1', Cap). Cap = kr:'Cone_vcRxyUbK'.


Demonstration: Segmentation and Interpretation of Geometric Object Models

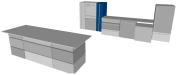
http://knowrob.org/doc/robots_and_the_internet



Mining object knowledge

- Automatically created ontology of >7500 objects from the online shop germandeli.com
- Class hierarchy from categories
 + perishability, weight, price, origin, ...
- SIFT recognition models from product pictures (work by Dejan Pangercic)

Infer storage locations based on semantic object similarity

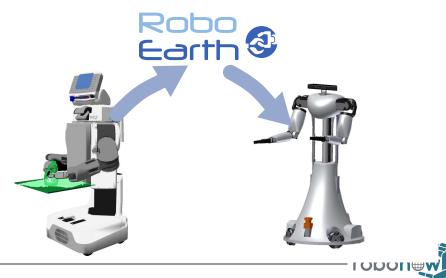


Learning Organizational Principles in Human Environments. Martin Schuster, Dominik Jain, Moritz Tenorth and Michael Beetz. ICRA 2012

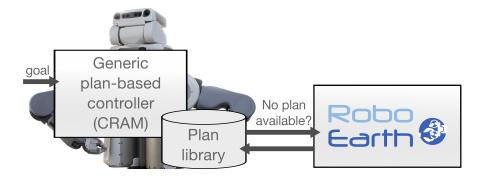
Infer storage locations based on semantic object similarity

?- highlight_best_location_dtree(
 orgprinciples:'CoffeeFilter1', Canvas).

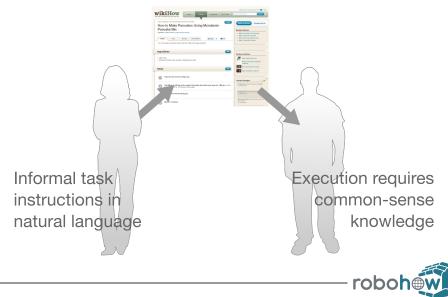
Best location: knowrob:Drawer7
Objects at location knowrob:Drawer7:
WUP similarity: object (class)
0.87500: orgprinciples:CoffeGround1
(germandeli:Dallmayr_Classic_Ground_Coffee_250g)
0.75000: orgprinciples:EspressoBeans1
(germandeli:illy_Espresso_Whole_Beans_88_oz)
0.70588: orgprinciples:Sugar1
(germandeli:Nordzucker_Brauner_Teezucker_500g)
0.66667: orgprinciples:Tea2
(germandeli:Teekanne_Rotbusch_Tee_Vanille_20_Bags)



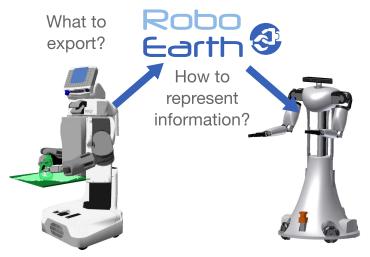
Demonstration: Object Ontology generated from an Online Shop


http://knowrob.org/doc/robots_and_the_internet

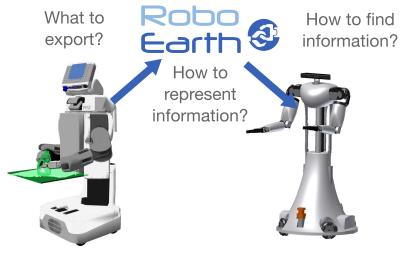
Use Case 2: Exchanging Information via the Cloud

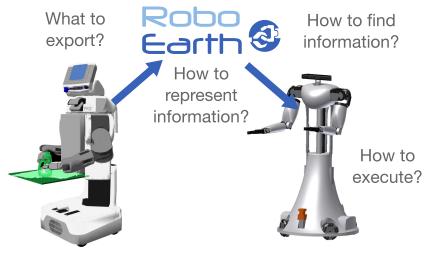


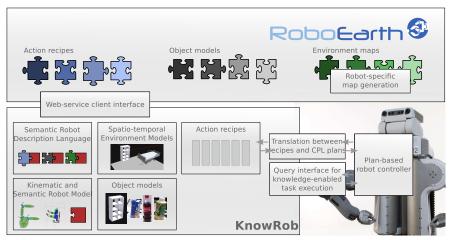
A generic Web-enabled Robot Control Program

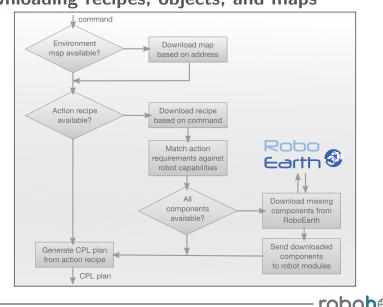


Information exchange among humans

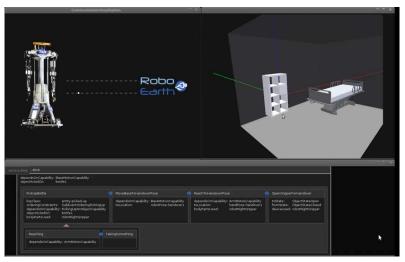


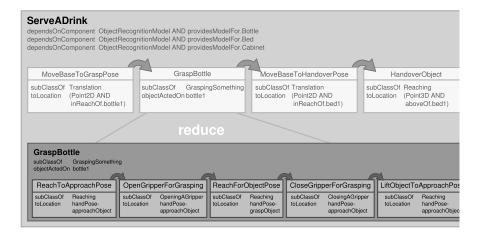




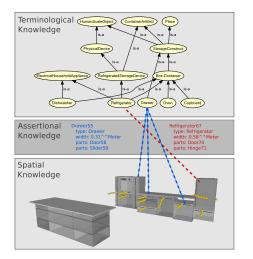


The RoboEarth system


http://www.roboearth.org


Downloading recipes, objects, and maps

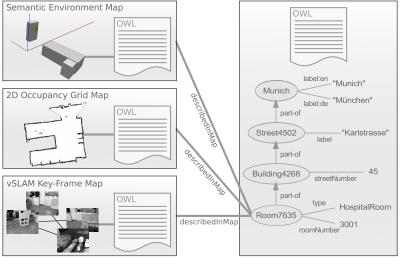
Video: Downloading recipes, objects, and maps



Action recipes

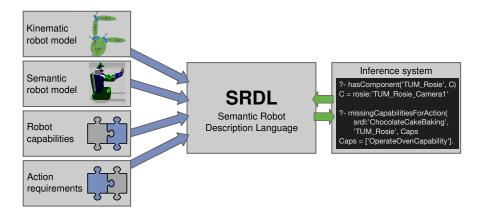
Semantic map representation

Abstract knowledge about object classes


Object instances and component hierarchy

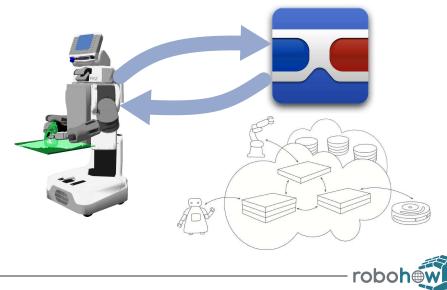
Poses in the environment and their changes over time

Related: TBOX/SBOX, Galindo et al (RAS 2008)



Meta-data on Environment Maps

Action Dependencies vs. Robot Capabilities



Demonstration: Exchanging Information via RoboEarth

http://knowrob.org/doc/robots_and_the_internet

Use Case 3: Outsourcing Services to the Cloud

Research Problems

▶ Integrating multiple complementary (cloud) services

Research Problems

► Integrating multiple complementary (cloud) services

► Knowledge representation describing the services and their content

Research Problems

Integrating multiple complementary (cloud) services

- ► Knowledge representation describing the services and their content
- Dealing with latency and varying information quality

- Integrating multiple complementary (cloud) services
 - ► Knowledge representation describing the services and their content
- Dealing with latency and varying information quality
 - Schedule sending queries early in the plan
 - Integrate cloud services into ensemble-of-experts architecture

- Integrating multiple complementary (cloud) services
 - Knowledge representation describing the services and their content
- Dealing with latency and varying information quality
 - Schedule sending queries early in the plan
 - Integrate cloud services into ensemble-of-experts architecture
- ► Ensuring safety also if cloud becomes unavailable

- Integrating multiple complementary (cloud) services
 - Knowledge representation describing the services and their content
- Dealing with latency and varying information quality
 - Schedule sending queries early in the plan
 - Integrate cloud services into ensemble-of-experts architecture
- ► Ensuring safety also if cloud becomes unavailable
 - Cloud services should only give added value, but at least safety controllers have to be local

- Integrating multiple complementary (cloud) services
 - Knowledge representation describing the services and their content
- Dealing with latency and varying information quality
 - Schedule sending queries early in the plan
 - Integrate cloud services into ensemble-of-experts architecture
- ► Ensuring safety also if cloud becomes unavailable
 - Cloud services should only give added value, but at least safety controllers have to be local
- Privacy aspects and security of information

- Integrating multiple complementary (cloud) services
 - Knowledge representation describing the services and their content
- Dealing with latency and varying information quality
 - Schedule sending queries early in the plan
 - Integrate cloud services into ensemble-of-experts architecture
- ► Ensuring safety also if cloud becomes unavailable
 - Cloud services should only give added value, but at least safety controllers have to be local
- Privacy aspects and security of information
 - ► Similar to cloud computing, but robots often know private details...

123D Catch: Object Modeling

- Service for building 3D models from a set of images of an object
- Potential to massively simplify creation of new object models

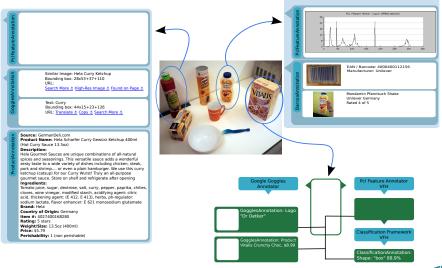
Frame and focus on the whole subject as you shoot...

Barcoo: Barcode Recognition

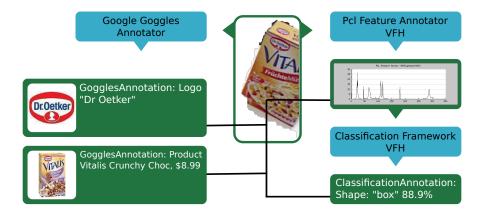
- Barcode recognition in camera images
- Shows detailed information about the objects (e.g. price, comments, nutrition and health information)
- Source for detailed semantic information about objects

Google Goggles: Object Recognition

- Recognizes text, logos, barcodes, etc in camera images
- Rich semantic information about the objects
- Fast: 1-3 seconds
- Varying quality of the results depending e.g. on viewing angle



Ensemble-of-Experts Architecture for Perception

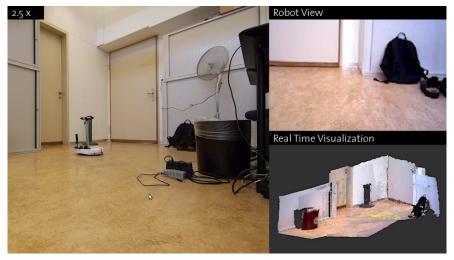

RoboSherlock: Unstructured Information Processing for Robot Perception. M. Beetz, N. Blodow, F. Balint-Benczedi, Z. Marton, D. Nyga, F. Seidel, and C. Kerl. Under review for IJRR.

Example: Scene Interpretation

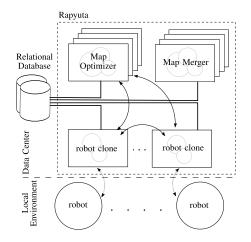
Combining Local Analysis with Cloud Information

Demonstration: Cloud-enabled Ensemble-of-experts Architecture for Robot Perception

http://pr2-looking-at-things.com/

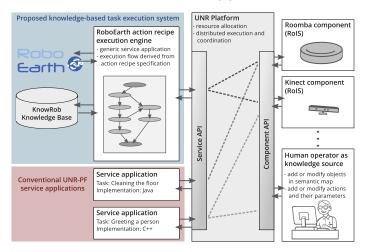

Offloading Computation to the Cloud

- Rapyuta: RoboEarth cloud engine
- Robots can connect to a ROS infrastructure in the Cloud via a Websocket interface
- Lightweight virtualization using Linux Containers

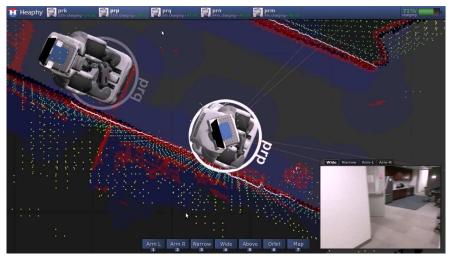


Video: Cloud-based Mapping (ETH Zurich)

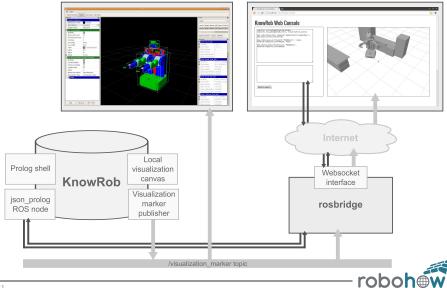
Video: Cloud-based Mapping (ETH Zurich)


Cloud-based Collaborative 3D Mapping in Real-Time with Low-Cost Robots. V. Usenko, M. Singh, M. Waibel, and G. Mohanarajah. Submitted to ICRA 2014.

Integration with the UNR Platform (ATR, Japan)



RoboEarth-enabled service applications


Building Knowledge-enabled Cloud Robotics Applications using the UNR Platform. Moritz Tenorth, K. Kamei, S. Satake, T. Miyashita and N. Hagita. IROS 2013

Video: Heaphy Robotics (Willow Garage)

Cloud-based Robot Knowledge Processing

Demonstration: Remote Web-based Knowledge Processing

http://knowrob.org/doc/robots_and_the_internet

Shameless advertisement

- Most of the presented software tools are available as open-source ROS packages (at least all from our group)
- KnowRob: Knowledge processing system for robots http://www.knowrob.org
- RoboEarth: Web-based shared robot knowledge base http://www.roboearth.org
- CRAM: Plan language and high-level executive http://www.cram-system.org (soon)
- RoboSherlock: Ensemble-of-experts perception system http://pr2-looking-at-things.com/ (soon)

Conclusions

- ▶ Web and Cloud applications have huge potential for robots
- Interesting use cases:
 - Acquiring knowledge from the Web
 - Exchanging information via cloud-based knowledge bases
 - Offloading computation by using cloud services
- **But:** as in real life, not everything can be done online...
 - Information from the Web is abstract and disembodied
 - Common-sense knowledge is hard to find since "everybody knows it"

Thank you for your attention!

http://ai.uni-bremen.de/team/moritz_tenorth http://www.knowrob.org

This work has received funding by the DFG Cluster of Excellence "CoTeSys" and the EU FP7 projects "RoboEarth" and "RoboHow".

